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Interferometric weak value deflections: Quantum and classical treatments
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We derive the weak value deflection given in an article by Dixon et al. [P. B. Dixon et al. Phys. Rev. Lett. 102
173601 (2009)] both quantum mechanically and classically, including diffraction effects. This article is meant to
cover some of the mathematical details omitted in that article owing to space constraints.
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I. INTRODUCTION

Weak values [1] have presented or inspired intriguing
possibilities for precision measurement. A recent example is
by Hosten and Kwiat [2], where they were able to amplify
the deflections arising from the spin Hall effect of light. The
light fields used in their experiment, as well as in Ref. [3],
were coherent quasiclassical fields and no apparent quantum
mechanical system was employed in either experiment. The
classical behavior of these weak value deflection measure-
ments has been known for some time [4]. Shortly after the
Hosten and Kwiat article, Aiello and Woerdman [5] published
the classical description to allow greater accessibility to
the metrology community. In the present article, we derive
both the quantum weak value amplification for a Sagnac
interferometer [3,6] and its classical counterpart under the
corresponding limits using the standard classical description
of the electromagnetic field. We end with a detailed calculation
of the diffraction effects, which are summarized in Ref. [3].

Consider the interferometric weak value experiment in
Ref. [3]. We point out that all two-dimensional quantum
systems are isomorphic to spin-1/2 particles. In the Hosten-
Kwiat experiment, the two-dimensional system was the trans-
verse polarization states of the light. For the weak value
description in this article, we use the which-path states
of a photon in a Sagnac interferometer as the two-state
system (see Fig. 1).

We first derive the quantum mechanical weak value de-
scription for a single photon in Sec. II before proceeding to
the derivation using classical fields in Sec. III. Finally, we
consider the case of a diverging beam in Sec. I'V.

II. QUANTUM TREATMENT

The which-path (system) variable of a photon is coupled
to its transverse momentum (meter) variable. The system
eigenstates are {|a;)} and the meter eigenstates are {|k,)}. The
preselected total state of the photon is the tensor product of
the system and meter states, written as

) = [ dkvkoal 06, (1)

where a,ir is the usual creation operator for the transverse mode

ke, lo1) = Zi cila;) is the input state of the photon, where {c; }
are the probability amplitudes for the system states, and ¥ (k)
is the transverse wave function. We assume that ¥ (k,) is a
Gaussian in order to obtain an analytic solution.
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We now describe the weak-measurement procedure. First,
the photon undergoes a small unitary evolution, which couples
one of the propagation directions in the interferometer to
one momentum shift given by k, and the other direction
to another momentum shift, given by —k (for a symmetric
interferometer). In essence, the momentum shift k, upon
detection, gives a small amount of which-path information
about the path of the photon. The unitary evolution is given
by U = e~kAx ~ 1 — ik Ax, where A is the which-path ob-
servable with eigenvalues given by Ala;) = a;|a;), and where
x is the transverse position variable of the photon. Measuring
this small momentum shift constitutes the weak measurement.
In this scheme, the weak measurement and post-selection
measurement happen simultaneously at the output port of the
beam splitter (measuring the transverse momentum and post
selecting on the output port).

For simplicity, the calculation here will assume a collimated
beam with no divergence. As seen in Fig. 1, a piezo-driven
mirror imparts a weak transverse momentum shift k in
opposite directions relative to the optical axis at the exit face
of the beam splitter. As noted earlier, this deflection gives
partial information about which way the photon went in the
interferometer because of the transverse position shift of the
photon in the detection plane. For very small momentum shifts
and short distances, the deflection is very small compared
to the transverse diameter of the beam, and thus the system
eigenstates are only weakly discriminated. As the photon
passes through the beam splitter for the second time, there
is a post-selection on the state |¢; ), which is nearly orthogonal
to the input state. This yields a post-selected meter state

(| UW) ~ fdka(kx)aZJOM‘kapl)

—i / dkop(kokxal 0) (@l Algn). ()

As can be seen, if the pre- and the post-selected system
states are nearly orthogonal, the probability for the photon to
pass through the post-selecting device (i.e., the beam splitter)
is small. However, for the photons that do pass through, we
must renormalize the single photon meter state. We define the
renormalized state as

W) = f dkyy(ky)aj 10)

~

(2] Ale1)

, 3
(@2le1) ©)

—i / dk ¥ (kkxa 10)
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FIG. 1. (Color online) Experimental setup. A fiber-coupled laser
is launched into free space and collimated. The beam passes
through a polarizing beam splitter (PBS) and then enters a Sagnac
interferometer that consists of three mirrors: a 50:50 beam splitter
(BS), a half wave plate (HWP), and a Soleil-Babinet compensator
(SBC). The SBC and HWP in the interferometer allow the output
intensity of the interferometer to be tuned. The output port is
monitored with a split detector. The piezo-driven mirror gives a small
beam deflection.

where the term % is the standard weak value term. A

quick example shows why this term is imaginary. Suppose
the preselected spin state is given by |¢) = \/Li(e”"f’/ 2|4 +
€'9/2|—)) and the post-selected state is |¢,) = %(H) — =M.
We then see that (@|@;) = isin(¢/2). IAf the observable
A is the Pauli operator o,, we find (@,|A|p;) = cos(¢/2).
Thus, {plAlgn) g purely imaginary. Noting this, we let A,, =

(@21¢1)
|%|. In this example, small ¢ produces a large A,,.
We will see that this corresponds to a standard weak value

enhancement.
As long as the second term on the right hand side is much

smaller than the first of Eq. (4), we can reexponentiate to obtain

W) = / dk (ke 4% al 10). (4)

To obtain the probability amplitude distribution in the
transverse plane, we define a positive-frequency field operator

E+(x) = ‘/‘dkxEoe_ik"X(lkx, (@)

where Ej is the electric field amplitude. Incorporating this
result and using the commutation relation [ay, a,i] = 8(k,. —
k,), the state becomes

OIE* ()W) = Eq / ke By (ke . (6)

From this point, we will not worry about the normalization of
the state and use the Gaussian wave function. Using the fact
that A, &~ 2/¢ for small ¢, we find

(OIE™ ()| ¥") o e‘z""/¢/dkxe—ikxxe—kfa2

x2 2kx
= exp [_T - —] , @)
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where o is the Gaussian beam radius. After completing the

square,
4ko?\?

. 8

‘ )} ®

One can see that, at the detector, there will be a transverse
position shift of the beam given by d,, = 4ko?/¢, where d,,
denotes the weak value transverse deflection.

(O|ET(x)|W) o exp [—ﬁ (x +

III. CLASSICAL TREATMENT

We now derive the same result classically using standard
wave optics. This can be done by denoting the transverse two-
port input field of the interferometer as

E, = (EO exp (4_)) , ©)
0

where the second position in the column vector denotes the
input port with no electric field. The field then passes through
a 50:50 beam splitter with matrix representation

1 1 i
S

We now define a matrix that gives both an opposite-momentum
shift k and a relative phase between the two paths:

ei(ka+¢/2) 0
M= ( 0 oit—kxte/2) | - (11)

We want to determine the field at the “dark” output port (i.e.,
the port with the lowest intensity of light coming out of it)
of the interferometer. The evolution of the light is represented
by the matrix combination

Eoul = (BMB)Em (12)

B =

The output field at the dark port is renormalized by noting
that the detector only measures the total flux falling on it to
determine the deflection. For small k, the renormalized [by
sin(¢/2)], measured output signal at the dark port will be of
the form

in(—k 2 —x2
EY = Mexp ). (13)
sin(¢/2) 402
For small angles, we obtain
2kx —x?
Egy ™ (1 - 7) exp (—402) : (14)

which we reexponentiate and, after completing the square in
the exponent, find

; 1 4ko?\’
Eg, o exp ~32 x+ " . (15)

We see that we obtain the same deflection as the quantum
mechanical weak value treatment.

IV. PROPAGATION EFFECTS

To consider the case of a diverging beam, we insert a
negative focal length lens before the interferometer and use
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standard Fourier optics methods in the paraxial approximation
outlined in Goodman [7]. In the case of the quantum treatment,
phase factors and Fourier transforms are applied to the
quantum state W(x) or W (k,) by convention. Similarly, in the
classical treatment, they are applied to the electric field E.
Passing through the lens, the wave function (electric field)
acquires a multiplicative phase factor exp[ikox?/(2s;)], where
ko is the wave number of the light and s; is the image distance
behind the lens, resulting in a spreading beam. Propagation
effects are accounted for by Fourier transforming the state
(field) at the lens, and applying a multiplicative phase factor
exp[—ip?l;./(2ky)] to the momentum-space wave function
(field), where [;,, is the distance between the lens and the
mirror. The effect of the oscillating mirror is to shift the
state (field) by a very small transverse momentum k, ®(p) —
O(p £ k) [E(ky) > E(k, £ k)], where the direction of the
shift depends on which path the photon takes in the interfer-
ometer. Propagation from the mirror to the detector results
in a final multiplicative phase factor exp[—i P2la/(2ko)] on
the momentum-space wave function (field), where /,,,; is the
distance between the mirror and the detector. After applying
an inverse Fourier transform, the individual amplitudes in both
arms are given by
—ikoxzzl:Zilkx] (16)
20 + Ina)

up to normalization, where [ = [, — a’s;Jla® + is; /(2ko)]
and a is the beam radius at the lens. These amplitudes
(fields) now interfere with a relative phase ¢, and the position
of the beam is monitored with a split detector at the dark
port. Because the relative momentum shift k£ given by the
movable mirror is so small, the post-selection probability is
given only by the overlap of pre- and post-selected states,

W o(x) o exp |:
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Pps = sin?(¢p/2) ~ ¢?/4 for ¢ < 1 as before. If we consider
the beam far from the focus, such that the wavelength A «
2ma®/s;, we find that the beam deflection is given by

2
d;) _ (4/((1 ) |:lzm(lzm2+lmd)i| —d,F, (17)
¢ §;
where /;;, is the distance between the image and the mirror.
We can rewrite this expression in terms of easily measurably
quantities by noting that the beam radius for a Gaussian
beam can be written as o (z) = o(0)[1 + (z/zz)*1"/>. Here,
z is the propagation distance, with z = 0 defined as the
location of the minimum beam radius, and where zg is
defined as the Rayleigh range. However, for slow divergence
of the beam, we can simply write o = a(l;,, + Luq)/si- We
can then eliminate the image distances s; and [, and
write

2l m lﬂ‘l
F = w‘ (18)
a (llm + lmd)
This multiplicative factor F is the
in Ref. [3].

same as found

V. CONCLUSION

We have derived the weak value deflection measurement
results in the article by Dixon et al. [3] using both classical
and quantum methods. The results for a diverging beam using
classical Fourier techniques with quantum wave functions and
classical electric fields were shown in more detail.
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