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Spectrometry requires high spectral resolution and high photometric precision while also balancing cost and
complexity. We address these requirements by employing a compressive-sensing camera capable of improving
signal acquisition speed and sensitivity in limited signal scenarios. In particular, we implement a fast single
pixel spectrophotometer with no moving parts and measure absorption and emission spectra comparable with
commercial products. Our method utilizes Hadamard matrices to sample the spectra and then minimizes the
total variation of the signal. The experimental setup includes standard optics and a grating, a low-cost digital
micromirror device, and an intensity detector. The resulting spectrometer produces a 512 pixel spectrum with
low mean-squared error and up to a 90% reduction in data acquisition time when compared with a standard
spectrophotometer. © 2016 Optical Society of America
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1. INTRODUCTION

All spectrometers utilize the dispersive properties of a grating or
prism to spatially separate the frequency components of a light
source. Indeed, a great deal of effort has been placed upon im-
proving optical designs to produce the most accurate spectral
images with minimal loss and distortion [1]. However, how this
spatial distribution of frequencies is measured differs from one
application to the next (e.g., scanning slit versus detector array).
Here, we propose and evaluate an alternative design that takes
advantage of the benefits of common spectrometers. Namely,
we focus on the acquisition of the spatially distributed spectrum
by applying methods from compressive sensing (CS) [2,3] to
the ubiquitous spectrometer.

A spectrophotometer packages together a light source, a test
sample, and a spectrometer to measure the absorption of a
material at different wavelengths. The spectrophotometer
comes in a variety of designs that vary the dispersive element,
the imaging optics, the sample location, and the measurement
technique. Additionally, some spectrophotometers have a
single beam design [4], where the spectrum is taken with
the sample removed and then inserted to calculate absorption;
others utilize a two beam design, allowing the reference
spectrum to be taken alongside the sample [5]. For either
design, one of the primary drivers of cost relies on how the
spectrum is measured. These fall into two categories: scanning
(e.g., the Cole-Parmer UX-83057-35) and array (e.g., the
Ocean Optics USB4000). Most scanning spectrophotometers

(sometimes called monochrometers) employ a mechanically
driven slit to scan across the image of the spectrum. For double
beam designs, two slits and two detectors are required, both of
which must be calibrated before each use. Alternatively, some
spectrophotometers use a detector array or CCD, where each
pixel corresponds to a range of frequencies. In this configura-
tion, the whole spectrum can be taken quickly (relative to
scanning devices) and be displayed in real-time. However,
low noise detector arrays inflate the cost of spectrophotometers.
For this reason, many high-resolution, high-precision spectro-
photometers rely on a scanning slit with a single low-noise
detector. In this work, we introduce the use of a 1D CS
single-pixel camera [6] to speed up acquisition time while still
requiring only a single detector.

Recently, CS has been used to acquire signals at a rate far
below the Nyquist frequency by taking advantage of the spar-
sity of the signal in some known basis [3]. For example, CS is
effective for many 2D images [6–8], which tend to be sparse in
the wavelet basis. CS also has been used in a variety of other
contexts, including hyperspectral imaging [9,10], characteriza-
tion of high-dimensional single photons [11–13], and micros-
copy [14–16]. Further work was conducted to improve these
results by applying various denoising algorithms in tandem
with CS [17].

In the context of spectroscopy, previous work has shown
that 2D images can be acquired with both spatial informa-
tion as well as frequency information [9,10]. These so-called
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“hyperspectral” methods combine a dispersive element with
CS to construct color images with a monochromatic sensor.
However, the frequency resolution of such devices is insufficient
for typical spectroscopic measurements. Some recent work has
been done in the area of nonlinear spectroscopy using a digital
micromirror device (DMD) and CS to map multidimensional
electronic structure and ultrafast dynamics [18]. Other work
has been done to utilize a DMD for spectroscopic measurements
[19]; however, CS was not employed. Additionally, Xu et al.
presented preliminary work on an Eschelle spectrometer, which
utilizes CS and a spatial light modulator to reconstruct spectra
from various lamps [20]. The authors produce a number of 2D
contour plots of reconstructed images in experiments but do not
reduce these results to plots of the spectra. The authors perform a
number of simulations and suggest that their technique will be
useful for gas tracing.

In what follows, we apply the methods from compressive
sensing and Hadamard sensing [21–25] to create a single-pixel
spectrometer capable of measuring emission spectra and a
spectrophotometer capable of measuring absorption spectra
in a single-beam design with a limited signal. We calibrate both
designs using mercury lamp emission and a calibrated narrow-
band filter. We test the calibrated spectrophotometer with a set
of dielectric filters. Results were independently verified using
commercial equipment and manufacturer specifications.

2. COMPRESSIVE SENSING

Compressive sensing is a method used to compress a signal
during the sensing process, as opposed to compressing it after
full acquisition of the signal. This is accomplished by leveraging
prior knowledge about effective strategies for compressing classes
of signals. Due to this real-time compression, fewer measure-
ments need to be made, resulting in shorter acquisition times.

To describe this compression technique, we typically con-
sider a time-varying signal f �t� that one wishes to acquire with
minimal error. Traditionally, the signal must be sampled at or
above the Nyquist rate [26]. However, if the signal can be rep-
resented in a sparse basis (e.g., the wavelet basis for 2D images),
we can undersample the function f �t� at a much lower rate and
still reproduce the signal with high fidelity. For maximum
efficiency, the signal must be sampled in an incoherent way
to avoid correlations between the arbitrary sampling scheme
and the signal we wish to acquire [27]. Therefore, in order
to apply the concepts of CS, we must have (a) a signal that
is sparse in some basis and (b) an incoherent sampling strategy.

In the context of imaging, a number of techniques have
been developed that take advantage of image sparsity. In our
case, we wish to measure the 1D spectrum x�ω� ∈ R, where
ω is the angular frequency of the light. We bin the spectrum
into N discrete frequencies such that a typically scanning slit or
CCD array would requireN measurements orN pixels, respec-
tively. However, utilizing CS, we wish to make M < N mea-
surements represented by a sensing matrix A ∈ RM×N to
obtain the M length measurement vector y ∈ R:

y � A · x: (1)

Many applications solve this set of underdetermined linear
equations [Eq. (1)] by minimizing the l1 norm of Φx subject

to measurement constraints, where unitary Φ transforms x to a
sparse representation. However, based upon the types of spectra
we expect to obtain, we solve for x directly in the pixel basis by
taking advantage of its sparsity in the gradient; this is done via
total variation (TV) minimization:

min
x∈RN

μ

2
‖y − A · x‖22 � TV�x�; (2)

where μ is a constant regularization factor, ‖⋆‖22 takes the l2

norm, and TV�x� finds the total variation of x:

TV�x� �
X

i
‖Dix‖: (3)

Here, Dix is the discrete gradient vector of x at position i.
The first penalty in Eq. (2) is a least-squares penalty that
ensures the recovered signal is consistent with measurement
results. The second penalty promotes compressibility in the
signal’s gradient. Equation (2) is convex and can be solved
in a number of ways. Here, we use the TVAL3 augmented
Lagrangian and alternating direction solver [28].

Last, we must specify the nature of the sensing matrix. We
choose A to be selected from a Hadamard matrix (each element
is�1) of orderN . In particular, we randomly permute the rows
of the Hadamard matrix and then randomly select M columns
for use in A. Using a randomly permuted and sampled
Hadamard matrix ensures incoherence with and even sampling
of x and allows for fast reconstructions [13,29]. In the follow-
ing section, we will discuss how the elements of A correspond
to a measurement in the spectrometer.

3. EXPERIMENT

The experimental setup is shown in Fig. 1. The spectrometer
consists of a light source, followed by a narrow slit, a 200 mm
focal length collimating lens, a 1 cm iris, a stage to place sam-
ples, a 600 groove/mm holographic reflective grating, a 50 mm
focal length concave mirror, and a DMD. The DMD is placed
on a micrometer (transverse) translation stage in order to sam-
ple different parts of the spectrum. The light is then directed to
a custom photodiode detector using a pair of lenses.

When absorption data is acquired, a broadband (400–
800 nm) light-emitting diode (Thorlabs model MWWHL3)
is used as the source. The input power to the spectrometer,

Fig. 1. Experimental setup of the CS spectrometer. The digital mi-
cromirror device (DMD) controls which spatial modes are measured
by the detector. See text for more details.
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measured after the iris, is approximately 100 μW; however,
due to efficiencies in the optical path, only 2.4 μW strike the
detector at full illumination. The largest losses come from the
DMD, which is not optimized for this particular application,
and the diffraction grating, where light is lost to other diffrac-
tion orders. In this configuration, test samples are placed after
the iris but before the grating. Depending on the application,
this placement can be changed as needed.

When emission data are acquired, the source is placed
behind the narrow slit, and no sample is used. Otherwise, the
setup is unaltered.

In both cases, a Texas Instruments Digital Light Projection
LightCrafter Evaluation Module is used with the LED re-
moved. This DMD has a resolution of 608 × 684 with 10.8 μm
pixels and is controlled via computer video output. Because the
grating’s dispersion (grating vector) is parallel to the plane of the
table, the random patterns (one column of the sensing matrix
A) are stretched to form vertical bars, as shown in the inset of
Fig. 2. White bars (a 1 in the sensing matrix) indicate that the
light at this location is sent to the detector and measured. Black
bars (a −1 in the sensing matrix) indicate that light at this
location is discarded. Because a −1 implies the light is mea-
sured, but contributes a negative value toward the measurement
y, this first measurement is followed by the inverse image,
where white and black bars are swapped. (Alternatively, two
detectors can be used to measure the power for both �1 ele-
ments of A simultaneously, further reducing acquisition time.)
The values for y are the difference in these two measurements.
Additionally, we normalize this difference by the total power
using the sum of both measurements in order to correct for
any drift in the input power. We acquire 511 total measure-
ments for a 512 pixel image (we discard the first column of
the Hadamard matrix because it is all 1 s); we then take a subset
of these measurements and reconstruct the image from the
compressed data.

A 0–6 V signal from the intensity detector is acquired at a
rate of 100 kS/s via a 16 bit data acquisition board (model NI

USB-6259) controlled by a custom python program. Each
measurement integrates for 100 ms and stores the average volt-
age from the photodiode during the time window. We also
measure the voltage offset (dark current) when the DMD is
switched off. Data is recorded and then processed (with the
offset subtracted) via MATLAB code utilizing TVAL3 [28]
with μ � 24, β � 24 and a tolerance of e−4.

4. RESULTS

A. Calibration Spectra
We first need to calibrate the spectrometer to determine its res-
olution and total range. To do so, we use the emission spectrum
from a mercury vapor lamp placed before the entrance slit. We
measure the 546 and 579 nm lines with the CS spectrometer
twice: we translate the DMD 5.1 mm using the micrometer
stage to sample the red and blue parts of the spectrum (required
for Fig. 3). The results are shown together in Fig. 2 along
with a fit line. From this data, we find that the resolution is
∼0.167 nm∕pixel over a range of 86 nm, which agrees well
with theoretical calculations based upon the dispersion of
the grating and the angles used in the experiment.

Using these results, we tested the absorption of a 10 nm
narrowband dielectric filter centered at 570 nm. Using a
Gaussian fit and the Pearson’s χ2 test as the fit parameter, we
measured the filter to be centered at 567 nm with a FWHM of
10.4 nm, which agrees with the product specifications.

Note that in these measurements we are only using a
subset of the DMD (512 of the 608 horizontal pixels) due
to technical restrictions of the reconstruction software.
However, larger resolution DMDs are available and would pro-
vide a proportionally larger range at the cost of acquisition and
reconstruction time.

B. Absorption Spectra
Once calibrated (with mercury) and verified (with the 570 nm
filter), we chose to consider a variety of absorption wavelengths
by testing broadband dielectric filters, as shown in Fig. 3. These
curves were created by dividing the spectrum with the filter

Fig. 2. Calibration of the spectrometer using the 546 and 579 nm
lines of a mercury lamp. The emission spectra were reconstructed
using CS with 512 measurements at 100 ms each (solid blue curve).
We show a best fit of a double Gaussian (dashed black curve) using
the Pearson’s χ2 test as the fit parameter. Inset shows a typical DMD
pattern constructed from one randomly permuted column of the
Hadamard matrix.
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Fig. 3. Measured absorption spectra of four dielectric filters using
the CS spectrometer (solid colored curves) and an Ocean Optics spec-
trometer (dashed black curves). Data were collected for four Thorlabs
dichroic filters: (a) blue (FD1B), (b) red (FD1R), (c) green (FD1G),
and (d) yellow (FD1Y) using 511 measurements.
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in place by the spectrum with the filter removed. The solid
colored lines indicate the CS reconstruction of the spectrum
with the calibrated wavelength axis. The dashed black lines
are the result from a commercial spectrometer (Ocean Optics
USB4000). The results from the CS spectrophotometer match
closely to the commercial product.

We should note that these results were obtained using
100 ms integration for each measurement. We also used the
full 511 measurements in order to produce the most accurate
representation of the spectrum. The reconstruction takes a
pproximately 100 ms to compute, and the data collection
requires 102.2 s of integration per spectrum (51.1 s with the
sample in, and 51.1 s with the sample out), which is compa-
rable with commercial single-beam spectrophotometers that
utilize a scanning slit. However, the purpose of CS is to
reduce the required number of measurements in order to ac-
quire data more rapidly. Therefore, we compared the accuracy
of reconstruction of the spectrum for the yellow filter shown in
Fig. 3 for increasing M , from as few as 10 measurements up to
all 511. We calculate the mean squared error (MSE) between
the limited reconstruction and the full reconstruction (with
M � 511) and show the results in Fig. 4. Note here that we
use only a single scan with the sample in place.

From this plot, we see that the MSE drops by 95% from
M � 10 to M � 53 measurements at which point the error
slowly decreases toward zero. Therefore, it is possible to obtain
an accurate measurement of an 86.0 nm spectrum with a res-
olution of 0.168 nm/pixel in only 5.3 s. We show the 10%
and 100% reconstructed spectra in the inset of Fig. 4.

5. CONCLUSION

We have shown, using a straightforward design, that it is
possible to measure absorption or emission spectra with high
resolution at a fast rate with very low brightness (<3 μW).
This design uses CS to reduce the number of measurements
by 90% relative to scanning spectrophotometers and results

in spectra that agree well with commercial products. However,
it can be seen in Fig. 3 that some detail of the spectra is
smoothed out. This is likely a result of chromatic aberration
in the first lens, the slit width used, or inadequate control
of the image plane of the DMD—and is not due to the
reconstruction technique because TV minimization is capable
of accurately reproducing piecewise constant signals [30].

Despite these difficulties, we measured a 512-pixel absorp-
tion spectrum for five test objects with low error in two wave-
length ranges as well as the emission spectrum of a mercury
lamp. These spectra can be obtained with only 53 measurements
(in 5.3 s) and 2.4 μW of light. Possible improvements include
using a larger DMD with a higher dispersion grating, improv-
ing the efficiencies of the various optical elements, and utilizing
shot-noise limited detection.
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