Extracting an entanglement signature from only classical mutual information

David J. Starling,
Curtis J. Broadbent and John C. Howell

University of Rochester

Outline

- Shannon and von Neumann Entropy
- Mutual Information - I and J
- Summing J in three bases
- Results

Shannon Entropy

- Shannon entropy is a measure of the uncertainty of a random variable
- A random variable A with probability distribution $p(a)$
- $H(A)=-\sum_{a \in A} p(a) \log p(a)$
- Measured in "bits" if log is base 2
- Evenly distributed probabilities gives higher entropy

von Neumann Entropy

- von Neumann entropy is the quantum analog of Shannon entropy
- A quantum state described by the density matrix ρ has von Neumann entropy
- $S(\rho)=-\operatorname{Tr}(\rho \log \rho)$
- Reduces to Shannon entropy upon projective measurements

Mutual Information (1/4)

- Consider two random variables:
- A with probability distribution $p(a)$
- B with probability distribution $p(b)$
- Joint probability: $p(a, b)$
- We can define the joint entropy:
- $H(A, B)=-\sum_{a \in A} \sum_{b \in B} p(a, b) \log p(a, b)$
- And also the conditional entropy:
- $H(A \mid B)=-\sum_{a \in A, b \in B} p(a, b) \log \frac{p(a, b)}{\sum_{a \in A} p(a, b)}$

Mutual Information (2/4)

- Mutual information is a measure of how much information A has in common with B
- $I(A, B)=H(A)+H(B)-H(A, B)$
- Pictorially:

Mutual Information (3/4)

- Classically equivalent:
- $J(A, B)=H(A)-H(A \mid B)$
- For a quantum state ρ :
- $I(\rho)=S\left(\rho^{A}\right)+S\left(\rho^{B}\right)-S(\rho)$
- J... is a little more complicated
- J assumes knowledge after a measurement - but in what basis?
- Assume subsystem B of ρ is projectively measured, then we have

$$
\cdot J(\rho)_{\left\{\Pi_{b}^{B}\right\}}:=S\left(\rho^{A}\right)-S\left(\rho \mid\left\{\Pi_{b}^{B}\right\}\right)
$$

Mutual Information (4/4)

- Where
- $S\left(\rho \mid\left\{\Pi_{b}^{B}\right\}\right)=\sum_{b} p(b) S\left(\rho_{b}\right)$
- $\rho_{b}=\frac{\Pi_{b}^{B} \rho \Pi_{b}^{B}}{\operatorname{Tr}\left[\rho \Pi_{b}^{B}\right]}$
- I and J differ in the quantum framework
- The minimized difference $I-J$ is known as the quantum discord
- J represents the classical correlations in the system

Summing J in three bases (1/2)

- Example:
- J is maximal (1) for the singlet state in any basis
- J is maximal for the maximally correlated mixed state in a singlet basis
- What if we sum J in three mutually unbiased bases? (e.g. HV, AD, RL)
- $M_{J}=J(\rho)_{\left\{\Pi_{b}^{B}\right\}}+J(\rho)_{\left\{\Pi_{b^{\prime}}^{B}\right\}}+J(\rho)_{\left\{\Pi_{b^{\prime \prime}}^{B}\right\}}$
- $M_{J_{C}}=J_{C}(\rho)_{\{a, b\}}+J_{C}(\rho)_{\left\{a^{\prime}, b^{\prime}\right\}}+J_{C}(\rho)_{\left\{a^{\prime \prime}, b^{\prime \prime}\right\}}$
- These quantities have some interesting properties

Summing J in three bases (2/2)

- They
- are bounded by 1 for separable states (based upon simulations)
- reach 3 for maximally entangled states
- take fewer measurements than a CHSH type test
- are a measure of how much information two parties can share in multiple bases

Results (1/2)

- Simulation

Results (2/2)

- Experimental Setup

- Singlet state (solid)
- Maximally correlated mixed state (hollow)

Thanks for listening!

- Special thanks to
- John C. Howell
- Curtis J. Broadbent
- Joe H. Eberly
- K. W. Cliff Chan
- Mikhail V. Federov
- References
- C. E. Shannon, Bell Syst. Tech. J. 27, 379 (1949).
- W. H. Zurek, Phys. Rev. A 67, 012320 (2003).
- J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, Phys. Rev. Lett. 23, 880 (1969).
- A. A. Qasimi and D. F. V. James, Phys. Rev. A 83, 032101 (2011).

