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How does weak measurement reversal contend with
statistically fluctuating disturbances?
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Entanglement is an important resource. How can we
maintain it?
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Entangled states are central to quantum information processing,
including quantum teleportation', efficient quantum computa-
tion” and quantum cryptography’. In general, these applications
work best with pure, maximally entangled quantum states. How-
ever, owing to an lly available
states are likely to be non-maximally entangled, partially mixed
(that is, not pure), or both. To counter this problem, various
schemes of illati state purification and
concentration have been proposed'''. Here we demonstrate
experimentally the distillation of maximally entangled states
from non-maximally entangled inputs. Using partial polarizers,
we perform a filtering process to maximize the entanglement of
pure polarization-entangled photon pairs generated by sponta-
neous parametric down-conversion'>"*, We have also applied our
methods to initial states that are partially mixed. After filtering,
the distilled states demonstrate certain non-local correlations, as
evidenced by their violation of a form of Bell’s inequality''*,
Because the initial states do not have this property, they can be
said to possess ‘hidden’ non-locality®"*.
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Decoherence free subspaces/subsystems:

I
Experimental Verification of

Decoherence-Free Subspaces

Paul G. Kwiat," Andrew J. Berglund,'t Joseph B. Altepeter,’
Andrew G. White-

Usi parametric d e produce polarizati
tangled States of two photons and characterize them using two.photon t0-
mography to measure the density matrix. A controllable decoherence is im-
posed on the states by passing the photons through thick, adjustable birefrin-
gent elements. When the system is subject to collective decoherence, one
particular entangled state is seen to be decoherence-free, as predicted by
theory. Such decoherence-free systems may have an important role for the
future of quantum computation and information processing.

PACS numbers: 89.70.+¢, 03.65.Bz, 42.50.Dv

1
Experimental Realization of
Noiseless Subsystems for
Quantum Information Processing

Lorenza Viola,'*t Evan M. Fortunato,** Marco A. Pravia®
Emanuel Knill, Raymond Laflamme,’ David G. Cory?

We demonstrate the protection of one bit of quantum information against all
collective noise in three nuclear spins. Because no subspace of states offers this
protection, the quantum bit was encoded in a proper noiseless subsystem. We
lherefore realize a general and efficient method for protecting quantum in-

formation. Robustness was verified for a full set of noise operators that do not
distinguish the spins. Verification relied on the most complete exploration of
engineered decoherence to date. The achieved fidelities show improved infor-
mation storage for a large, noncommutative set of errors.
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Weak Measurement Reversal

A third solution is to undo, or reverse a quantum

measurement.
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Reversal of the Weak Measurement of a Quantum State in a Superconducting Phase Qubit
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e demansirate in & superconducing qubit the conditional recovery (uncollapsing) of a quantum sate
aar partialcollapse measurement. A wesk measurement exteacts information and results in
nonunitary transformation of the qubit state, However, by adding a rotation und a second partial
‘measurement with the same strength, we crase the extracted information. canceling the effcct of both
‘measurements. The fidelity of the siae recovery s measured using quantum process tomography and
found to be sbove 70% for partialcollapse strength less than 0.6
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Entanglement of a system changes due o interactions with the environment. A typical type of nteraction i
i

atwo-

For the amplitude-

damping case. the entanglement partally recovers under most conditions. For the weak measurement case, the

recovery of the inidal entangled state is exact. The reversal procedure involves another weak measuremen,
cdby bit

ded and foll
demansiration of these procedures

DOI: 10.1103/PhysRevA 52052323
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Let’s see how this works

Introduction

> We start with a quantum state p

Weak Measurement
. ~ Reversal
» We perturb the state with a measurement M erens

Stochastic Disturbance

/ MPMT Results and Future Work
P Tr[MpMT]

v

The fidelity may drop:

f(p,p’)=Tr[ \/ﬁp’\/ﬁ] <1

v

As a result, the entanglement may drop.

v

What if we perform a second measurement, analogous

to the first?
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» We measure the state p’ with a new measurement M’

. M p/ Jydl
Te[b o/ M|

» For a tuned measurement, F(p, p”) = 1
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> Even after a perturbation we maintain the
Introduction

entanglement!

‘Weak Measurement
. . . Reversal
> Let’s look at a specific photonic example: the singlet

Stochastic Disturbance

state With amplitude damplng Results and Future Work
) HV) — |VH)
wry = VI TVH)
V2
M = Dol

A

- €_¢ﬂH + ﬂVa

» The optimal correction M’ in this case is

M =1®D




Weak Measurement Reversal

Amplitude Damping:
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Phase Damping:

(b)

Fidelity/Concurrence/Probability
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Let’s now consider a random disturbance characterized by a

Results and Future Work

Gaussian random variable 5
» Mean: (¢) = &g
> Variance: 02 = (¢%) — (¢)2
» If we choose a correction to fit the mean value ¢,, what

do we find?




Stochastic Disturbance, Static Correction

Phase Damping
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Stochastic Disturbance, Static Correction

Probability
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Stochastic Disturbance, Static Correction

We can do the same analysis with three parties
» The GHZ state with amplitude damping

|HHH) — |[VVV)
V2
Deoliwl

|GHZ) =

~

M

~

D = e_(bﬂ[-]-i-ﬂv,

» The optimal correction M’ in this case is attenuating
the V polarization of any party, e.g.:

M = 1gieD

D = ﬂ]-] + e_¢ﬂv,
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Stochastic Disturbance, Static Correction measurement reersal

for stochastic amplitude

damping
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Results and Future Work

We have shown that a random disturbance in the form of
amplitude and phase damping can be corrected with high
fidelity using a static (weak) measurement.

Future work:

UV Source

QWP
HWP
Polarizer
PBS

NIND
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Results and Future Work

Contact Information:
» David J. Starling
» email: starling@psu.edu

» website: www.david-starling.com
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