# Compressive sensing for spatial and spectral flame diagnostics



David J. Starling Joseph Ranalli Scott Gauer

> Penn State Hazleton March 7, 2014

Compressive sensing for spatial and spectral flame diagnostics

Flame Diagnostics

**Compressive Sensing** 

Spatial imaging

Species and temperature measurement

How can modern low light level imaging techniques be used for flame diagnostics?

- Flames Diagnostics
- Compressive sensing (review)
- Spatial imaging (chemiluminescence)
- Species and temperature measurement

Compressive sensing for spatial and spectral flame diagnostics

Flame Diagnostics

**Compressive Sensing** 

Spatial imaging

Species and temperature measurement

Emissions, efficiency and safety are the primary concerns in combustion research.

However, flame diagnostics often require low-intensity optical measurements.



- Photomultiplier tubes used for single point data
- Intensified CCDs used for spatially resolved data

Compressive sensing for spatial and spectral flame diagnostics

Flame Diagnostics

**Compressive Sensing** 

Spatial imaging

Species and temperature measurement

Hydrocarbons produce well known spectra with features associated with different species.



- Excited radical emission correlates to thermal power
- Used to detect spatial heat release rate

Compressive sensing for spatial and spectral flame diagnostics

Flame Diagnostics

**Compressive Sensing** 

Spatial imaging

Species and temperature measurement

Compressive sensing is an acquisition method that takes advantage of the sparsity of the signal.

Consider a seemingly complex signal:



But, in the fourier domain... (inverted for clarity)

Compressive sensing for spatial and spectral flame diagnostics

Flame Diagnostics

**Compressive Sensing** 

Spatial imaging

Species and temperature measurement

Compressive sensing utilizes the sparsity of an image **u** to find a solutions to a simple linear algebra problem:

$$\min_{\mathbf{u}} \sum |\mathbf{u}| \quad \text{s.t.} \quad \mathbf{f}_{(M \times 1)} = \mathcal{A}_{(M \times N)(N \times 1)} \quad (1)$$

**f** is a vector of *M* measurement results

•  $\mathcal{A}$  is an incoherent  $M \times N$  measurement matrix

For images, minimizing the total variation is better:

$$\min_{u} \sum_{i} ||D_{i}u|| \quad \text{s.t.} \quad \mathbf{f} = \mathcal{A}\mathbf{u}$$
(2)

Compressive sensing for spatial and spectral flame diagnostics

Flame Diagnostics

**Compressive Sensing** 

Spatial imaging

Species and temperature measurement

### An incoherent sampling can reproduce the image **u** with $M \ll N$ .



(this ignores the fluctuations in the image)

Compressive sensing for spatial and spectral flame diagnostics

Flame Diagnostics

Compressive Sensing

Spatial imaging

Species and temperature measurement

#### We image a propane $(C_3H_8)$ flame onto a DMD array:



The collection optics include steering mirrors, lenses, spectral filtering and a multimode fiber with a 50  $\mu$ m core.

Compressive sensing for spatial and spectral flame diagnostics

Flame Diagnostics

**Compressive Sensing** 

Spatial imaging

Species and temperature measurement

| Flame size             | $1 \text{ cm} \times 1.5 \text{ cm}$ |
|------------------------|--------------------------------------|
| Image size             | $300 \ \mu m 	imes 450 \ \mu m$      |
| Photon Flux (434 nm)   | 6,000 counts/s                       |
| Dimensions N           | 24 	imes 28                          |
| Measurements $M$ (max) | 672                                  |
| Time per measurement   | 1 s                                  |

Compressive sensing for spatial and spectral flame diagnostics

Flame Diagnostics

Compressive Sensing

Spatial imaging

Species and temperature measurement

Results

Raster Scan



100 % Measurement



## To measure the spectrum of the flame with limited signal, we can again use CS.



Compressive sensing for spatial and spectral flame diagnostics

Flame Diagnostics

**Compressive Sensing** 

Spatial imaging

Species and temperature measurement

### Species and temperature measurement

| Bin Width (spectral) | 0.361 nm  |
|----------------------|-----------|
| Dimensions N         | 2047      |
| Measurements M       | 409 (20%) |
| Relative Error       | 12%       |



Compressive sensing for spatial and spectral flame diagnostics

Flame Diagnostics

**Compressive Sensing** 

Spatial imaging

Species and temperature measurement

For Raman scattering, a "weak" CW beam can be used due to the increased sensitivity.



Compressive sensing for spatial and spectral flame diagnostics

Flame Diagnostics

**Compressive Sensing** 

Spatial imaging

Species and temperature measurement

For dim flames, compressive sensing can:

- (a) improve SNR or reduce integration (cf. raster scan);
- (b) reduce cost of imaging systems (cf. intensified CCDs);
- (c) allow for Raman spectroscopy with a CW pump;

**Contact Information:** 

- David J. Starling
- email: starling@psu.edu
- website: www.david-starling.com

Compressive sensing for spatial and spectral flame diagnostics

Flame Diagnostics

**Compressive Sensing** 

Spatial imaging

Species and temperature measurement