Chapter 1 - Measurement

"There are two possible outcomes: if the result confirms the hypothesis, then you've made a measurement. If the result is contrary to the hypothesis, then you've made a discovery."

> - Enrico Fermi

David J. Starling
Penn State Hazleton PHYS 211

What is a Unit?

International System of Units

Units in Mechanics
Significant Figures

What is a Unit?

A measurement is an assignment of numbers (with units) to objects or events, often including

What is a Unit?

A measurement is an assignment of numbers (with units) to objects or events, often including magnitude and uncertainty.

What are some examples of units that you are familiar with?

- Distance:
- Time:
- Mass:
- Volume:

International System of
Units
Units in Mechanics
Significant Figures

What is a Unit?

The first task when making a measurement is to choose an appropriate unit.

What is a Unit?
International System of Units

Units in Mechanics
Significant Figures

What is a Unit?

The first task when making a measurement is to choose an appropriate unit.

For length, you might choose:

What is a Unit?
International System of Units

Units in Mechanics
Significant Figures

- meter (m)
- inch (in)
- foot (ft)
- yard (yd)
- fathom (ftm)
- nautical mile (nmi)
- league
- astronomical unit (au)
- (this list goes on forever)

What is a Unit?

A unit is a measure of a quantity that scientists around the world can refer to. The unit should be both accessible and invariable.

What is a Unit?

A unit is a measure of a quantity that scientists around the world can refer to. The unit should be both accessible and invariable.

What is a Unit?
International System of Units

Units in Mechanics
Significant Figures

What if two scientists use different unit systems?

What is a Unit?

A unit is a measure of a quantity that scientists around the world can refer to. The unit should be both accessible and invariable.

What is a Unit?
International System of Units

Units in Mechanics
Significant Figures

What if two scientists use different unit systems?

Example: How many Jordans is the Empire State Building?

What is a Unit?

A unit is a measure of a quantity that scientists around the world can refer to. The unit should be both accessible and invariable.

What is a Unit?
International System of Units

Units in Mechanics
Significant Figures

What if two scientists use different unit systems?

Example: How many Jordans is the Empire State Building?

$$
H=1450 \mathrm{ft} \times \overbrace{\frac{\overbrace{\text { jordan }}}{6.5 \mathrm{ft}}}^{1}=223 \text { jordans }
$$

What is a Unit?

Other examples:

(a) How many seconds are in 3.5 minutes?
(b) How many inches is Shaq's foot (1.25 ft)?
(c) How fast is a 35 mph kangaroo in m / s ? (note, 1 mile \approx $1609 \mathrm{~m})$

What is a Unit?

Other examples:

(a) How many seconds are in 3.5 minutes?
(b) How many inches is Shaq's foot (1.25 ft)?
(c) How fast is a 35 mph kangaroo in m / s ? (note, 1 mile \approx $1609 \mathrm{~m}) \rightarrow 16 \mathrm{~m} / \mathrm{s}$

International System of Units

The standard set of units is known as the S.I. system, established in 1971.

Table 1-1

Units for Three SI Base Quantities

Quantity	Unit Name	Unit Symbol
Length	meter	m
Time	second	s
Mass	kilogram	kg

What is a Unit?
International System of Units

Units in Mechanics
Significant Figures

International System of Units

The standard set of units is known as the S.I. system, established in 1971.

Table 1-1

Units for Three SI Base Quantities

What is a Unit?
International System of Units

Units in Mechanics
Significant Figures

- $\mathbf{1}$ meter is how far light travels in $1 / 299792458$ of a second

International System of Units

The standard set of units is known as the S.I. system, established in 1971.

Table 1-1

Units for Three SI Base Quantities

What is a Unit?
International System of Units

Units in Mechanics
Significant Figures

- $\mathbf{1}$ meter is how far light travels in $1 / 299792458$ of a second
- $\mathbf{1}$ second is defined to be the time that it takes a cesium atom's valence electron to oscillate 9192631770 times between its ground states

International System of Units

The standard set of units is known as the S.I. system, established in 1971.

Table 1-1

Units for Three SI Base Quantities

What is a Unit?
International System of Units

Units in Mechanics
Significant Figures

- $\mathbf{1}$ meter is how far light travels in $1 / 299792458$ of a second
- $\mathbf{1}$ second is defined to be the time that it takes a cesium atom's valence electron to oscillate 9192631770 times between its ground states
- $\mathbf{1}$ kilogram is the mass of a platinum-iridium cylinder kept under lock-and-key near Paris

International System of Units

Derived units are constructed out of base units.

What is a Unit?
International System of
Units
Units in Mechanics
Significant Figures

International System of Units

Derived units are constructed out of base units.

What is a Unit?

International System of Units

Units in Mechanics
Significant Figures
Examples of derived units:

- Speed (m/s)
- Momentum ($\mathrm{kg} \mathrm{m} / \mathrm{s}$)
- Force ($\mathrm{kg} \mathrm{m} / \mathrm{s}^{2}$)
- Torque ($\mathrm{kg} \mathrm{m}^{2} / \mathrm{s}^{2}$)
- Energy (joule $=\mathrm{kg} \mathrm{m}^{2} / \mathrm{s}^{2}$)
- Power $\left(\right.$ watt $=$ joule $\left./ \mathrm{s}=\mathrm{kg} \mathrm{m}^{2} / \mathrm{s}^{3}\right)$

International System of Units

These S.I. units are very useful in our every-day lives-but not for atomic or astronomical objects.

What is a Unit?
International System of Units

Units in Mechanics
Significant Figures

International System of Units

These S.I. units are very useful in our every-day lives-but not for atomic or astronomical objects.

We introduce scientific notation:

- Clearly, $100=10^{2}$ and $1000=10^{3}$.

International System of Units

These S.I. units are very useful in our every-day lives-but not for atomic or astronomical objects.

We introduce scientific notation:

- Clearly, $100=10^{2}$ and $1000=10^{3}$.
- Therefore,

$$
\begin{aligned}
314 & =3.14 \times 10^{2} \\
3141 & =3.141 \times 10^{3} \approx 3.1 \times 10^{3} \\
0.003141 & =3.141 \times 10^{-3} \approx 3.1 \times 10^{-3}
\end{aligned}
$$

International System of Units

These S.I. units are very useful in our every-day lives-but not for atomic or astronomical objects.

We introduce scientific notation:

- Clearly, $100=10^{2}$ and $1000=10^{3}$.
- Therefore,

$$
\begin{aligned}
314 & =3.14 \times 10^{2} \\
3141 & =3.141 \times 10^{3} \approx 3.1 \times 10^{3} \\
0.003141 & =3.141 \times 10^{-3} \approx 3.1 \times 10^{-3}
\end{aligned}
$$

- That is, we reduce the number to the form

$$
\mathrm{X} . \mathrm{YZ} \times 10^{N},
$$

where N is how many places we moved the decimal point.

International System of Units

We can simplify large numbers by using prefixes, so that $3.14 \times 10^{3} \mathrm{~m}$ becomes 3.14 km (kilometers).

What is a Unit?

International System of Units

Units in Mechanics
Significant Figures

International System of Units

We can simplify large numbers by using prefixes, so that $3.14 \times 10^{3} \mathrm{~m}$ becomes 3.14 km (kilometers).

What is a Unit?
International System of Units

Units in Mechanics
Significant Figures

Table 1-2					
Prefixes for SI Units					
Factor	Prefix ${ }^{\text {a }}$	Symbol	Factor	Prefix ${ }^{\text {a }}$	Symbol
10^{24}	yotta-	Y	10^{-1}	deci-	d
10^{21}	zetta-	Z	10^{-2}	centi-	c
10^{18}	exa-	E	10^{-3}	milli-	m
10^{15}	peta-	P	10^{-6}	micro-	μ
10^{12}	tera-	T	10^{-9}	nano-	n
10^{9}	giga-	G	10^{-12}	pico-	p
10^{6}	mega-	M	10^{-15}	femto-	f
10^{3}	kilo-	k	10^{-18}	atto-	a
10^{2}	hecto-	h	10^{-21}	zepto-	z
10^{1}	deka-	da	10^{-24}	yocto-	y

"The most frequently used prefixes are shown in bold type.

International System of Units

We can simplify large numbers by using prefixes, so that $3.14 \times 10^{3} \mathrm{~m}$ becomes 3.14 km (kilometers).

What is a Unit?

International System of Units

Units in Mechanics
Significant Figures

Table 1-2					
Prefixes for SI Units					
Factor	Prefix ${ }^{\text {a }}$	Symbol	Factor	Prefix ${ }^{\text {a }}$	Symbol
10^{24}	yotta-	Y	10^{-1}	deci-	d
10^{21}	zetta-	Z	10^{-2}	centi-	c
10^{18}	exa-	E	10^{-3}	milli-	m
10^{15}	peta-	P	10^{-6}	micro-	μ
10^{12}	tera-	T	10^{-9}	nano-	n
10^{9}	giga-	G	10^{-12}	pico-	p
10^{6}	mega-	M	10^{-15}	femto-	f
10^{3}	kilo-	k	10^{-18}	atto-	a
10^{2}	hecto-	h	10^{-21}	zepto-	z
10^{1}	deka-	da	10^{-24}	yocto-	y

"The most frequently used prefixes are shown in bold type.
Example: the distance to the moon is about

$$
384,400,000 \mathrm{~m}=3.8 \times 10^{8} \mathrm{~m}=0.38 \mathrm{Gm} .
$$

Units in Mechanics

Approximate Lengths in Meters

What is a Unit?
International System of Units

Units in Mechanics
Significant Figures

Table 1-3

Some Approximate Lengths

Measurement	Length in Meters
Distance to the first galaxies formed	2×10^{26}
Distance to the Andromeda galaxy	2×10^{22}
Distance to the nearby star Proxima Centauri	4×10^{16}
Distance to Pluto	6×10^{12}
Radius of Earth	6×10^{6}
Height of Mt. Everest	9×10^{3}
Thickness of this page	1×10^{-4}
Length of a typical virus	1×10^{-8}
Radius of a hydrogen atom	5×10^{-11}
Radius of a proton	1×10^{-15}

Units in Mechanics

Approximate Times in Seconds

Table 1-4

Some Approximate Time Intervals

Measurement	Time Interval in Seconds
Lifetime of the proton (predicted)	3×10^{40}
Age of the universe	5×10^{17}
Age of the pyramid of Cheops	1×10^{11}
Human life expectancy	2×10^{9}
Length of a day	9×10^{4}
Time between human heartbeats	8×10^{-1}
Lifetime of the muon	2×10^{-6}
Shortest lab light pulse	1×10^{-16}
Lifetime of the most unstable particle	1×10^{-23}
The Planck time ${ }^{a}$	1×10^{-43}

[^0]
Units in Mechanics

Approximate Masses in Kilograms

What is a Unit?
International System of Units

Units in Mechanics
Significant Figures
Some Approximate Masses
Mass in
Object
Kilograms
Known universe 1×10^{53}
Our galaxy $\quad 2 \times 10^{41}$
Sun $\quad 2 \times 10^{30}$
Moon $\quad 7 \times 10^{22}$
Asteroid Eros $\quad 5 \times 10^{15}$
Small mountain $\quad 1 \times 10^{12}$
Ocean liner $\quad 7 \times 10^{7}$
Elephant $\quad 5 \times 10^{3}$
Grape $\quad 3 \times 10^{-3}$

Speck of dust $\quad 7 \times 10^{-10}$
Penicillin molecule $\quad 5 \times 10^{-17}$
Uranium atom $\quad 4 \times 10^{-25}$
Proton $\quad 2 \times 10^{-27}$
Electron 9×10^{-31}

Units in Mechanics

The period of a pendulum's swing can be derived using only dimensional analysis.

What is a Unit?

International System of Units

Units in Mechanics
Significant Figures

Units in Mechanics

The period of a pendulum may depend on length l, mass m and gravitational acceleration g.

$$
T \propto l^{a} g^{b} m^{c}
$$

What is a Unit?

International System of Units

Units in Mechanics
Significant Figures

Units in Mechanics

The period of a pendulum may depend on length l, mass m and gravitational acceleration g.

What is a Unit?

International System of Units

Units in Mechanics
Significant Figures

$$
[\mathrm{T}]=[\mathrm{L}]^{a}\left(\frac{[\mathrm{~L}]}{\left[\mathrm{T}^{2}\right]}\right)^{b}[\mathrm{M}]^{c}
$$

What are a, b and c ?

Units in Mechanics

The period of a pendulum may depend on length l, mass m and gravitational acceleration g.

What is a Unit?

International System of Units

Units in Mechanics
Significant Figures

$$
\begin{gathered}
T \propto l^{a} g^{b} m^{c} \\
{[\mathrm{~T}]=[\mathrm{L}]^{a}\left(\frac{[\mathrm{~L}]}{\left[\mathrm{T}^{2}\right]}\right)^{b}[\mathrm{M}]^{c}}
\end{gathered}
$$

What are a, b and c ?

Answer: $a=1 / 2, b=-1 / 2$ and $c=0$, so $T \propto \sqrt{l / g}$

Significant Figures

When a scientist makes a measurement, there is always some uncertainty.

Example: $8.8 \pm 0.1 \mathrm{~cm}$.

What is a Unit?
International System of Units

Units in Mechanics
Significant Figures

Significant Figures

When a scientist makes a measurement, there is always some uncertainty.

Example: $8.8 \pm 0.1 \mathrm{~cm}$. The percent uncertainty is

$$
\frac{0.1}{8.8} \times 100 \% \approx 1 \%
$$

What is a Unit?

International System of Units

Units in Mechanics
Significant Figures

Significant Figures

When a scientist makes a measurement, there is always some uncertainty.

Example: $8.8 \pm 0.1 \mathrm{~cm}$. The percent uncertainty is

$$
\frac{0.1}{8.8} \times 100 \% \approx 1 \%
$$

If uncertainty is unspecified, we assume an accuracy of about one or two units of the last digit.
$8.8 \mathrm{~cm} \rightarrow 8.8 \pm 0.1$ or $8.8 \pm 0.2 \mathrm{~cm}$

Significant Figures

How many significant figures are there?

What is a Unit?

International System of Units

Units in Mechanics
Significant Figures

number	sig figs
8.8	2
8.80	
0.8	
0.80	
8.0008	
80	
80.	
80.00	

Significant Figures

For standard operations, keep as many significant figures as the least precise number.

What is a Unit?

International System of Units

Units in Mechanics
Significant Figures

Significant Figures

For standard operations, keep as many significant figures as the least precise number.

What is a Unit?

International System of Units

Units in Mechanics
Significant Figures

$$
A=l w=11.3 \mathrm{~cm} \times 6.8 \mathrm{~cm}=76.84 \mathrm{~cm}^{2}=77 \mathrm{~cm}^{2}
$$

Significant Figures

For standard operations, keep as many significant figures as the least precise number.

What is a Unit?

International System of
Units
Units in Mechanics
Significant Figures

$$
A=l w=11.3 \mathrm{~cm} \times 6.8 \mathrm{~cm}=76.84 \mathrm{~cm}^{2}=77 \mathrm{~cm}^{2}
$$

Why? Well...

$$
\begin{aligned}
A_{\min } & =11.2 \mathrm{~cm} \times 6.7 \mathrm{~cm}=75.04 \mathrm{~cm}^{2} \\
A_{\max } & =11.4 \mathrm{~cm} \times 6.9 \mathrm{~cm}=78.66 \mathrm{~cm}^{2}
\end{aligned}
$$

Significant Figures

For standard operations, keep as many significant figures as the least precise number.

What is a Unit?

International System of
Units
Units in Mechanics
Significant Figures

$$
A=l w=11.3 \mathrm{~cm} \times 6.8 \mathrm{~cm}=76.84 \mathrm{~cm}^{2}=77 \mathrm{~cm}^{2}
$$

Why? Well...

$$
\begin{aligned}
A_{\min } & =11.2 \mathrm{~cm} \times 6.7 \mathrm{~cm}=75.04 \mathrm{~cm}^{2} \\
A_{\max } & =11.4 \mathrm{~cm} \times 6.9 \mathrm{~cm}=78.66 \mathrm{~cm}^{2} \\
\therefore A & =77 \pm 2 \mathrm{~cm}^{2}
\end{aligned}
$$

[^0]: ${ }^{\text {a }}$ This is the earliest time after the big bang at which the laws of physics as we know them can be applied.

