Chapter 1 - Measurement

"There are two possible outcomes: if the result confirms the hypothesis, then you've made a *measurement*. If the result is contrary to the hypothesis, then you've made a discovery."

- Enrico Fermi

Chapter 1 -Measurement

What is a Unit?

International System of Units

Units in Mechanics

Significant Figures

David J. Starling Penn State Hazleton PHYS 211 A **measurement** is an assignment of numbers (with units) to objects or events, often including magnitude and uncertainty. What is a Unit?

International System of Units

Units in Mechanics

A **measurement** is an assignment of numbers (with units) to objects or events, often including magnitude and uncertainty.

What are some examples of units that you are familiar with?

- Distance:
- ► Time:
- Mass:
- Volume:

Chapter 1 -Measurement

What is a Unit?

International System of Units

Units in Mechanics

The first task when making a measurement is to choose an appropriate unit.

Chapter 1 -Measurement

What is a Unit?

International System of Units

Units in Mechanics

The first task when making a measurement is to choose an appropriate unit.

For length, you might choose:

- meter (m)
- ▶ inch (in)
- ► foot (ft)
- yard (yd)
- ▶ fathom (ftm)
- nautical mile (nmi)
- league
- astronomical unit (au)
- (this list goes on forever)

Chapter 1 -Measurement

What is a Unit?

International System of Units

Units in Mechanics

A **unit** is a measure of a quantity that scientists around the world can refer to. The unit should be both accessible and invariable. Chapter 1 -Measurement

What is a Unit?

International System of Units

Units in Mechanics

A **unit** is a measure of a quantity that scientists around the world can refer to. The unit should be both accessible and invariable.

What if two scientists use different unit systems?

Chapter 1 -Measurement

What is a Unit?

International System of Units

Units in Mechanics

A **unit** is a measure of a quantity that scientists around the world can refer to. The unit should be both accessible and invariable.

What if two scientists use different unit systems?

Example: How many Jordans is the Empire State Building?

Chapter 1 -Measurement

What is a Unit?

International System of Units

Units in Mechanics

A **unit** is a measure of a quantity that scientists around the world can refer to. The unit should be both accessible and invariable.

What if two scientists use different unit systems?

Example: How many Jordans is the Empire State Building?

$$H = 1450 \text{ ft} \times \frac{1}{1 \text{ jordan}} = 223 \text{ jordans}$$

Chapter 1 -Measurement

What is a Unit?

International System of Units

Units in Mechanics

Other examples:

- (a) How many seconds are in 3.5 minutes?
- (b) How many inches is Shaq's foot (1.25 ft)?
- (c) How fast is a 35 mph kangaroo in m/s? (note, 1 mile \approx 1609 m)

What is a Unit?

International System of Units

Units in Mechanics

Other examples:

- (a) How many seconds are in 3.5 minutes?
- (b) How many inches is Shaq's foot (1.25 ft)?
- (c) How fast is a 35 mph kangaroo in m/s? (note, 1 mile \approx 1609 m) \rightarrow 16 m/s

What is a Unit?

International System of Units

Units in Mechanics

The standard set of units is known as the S.I. system, established in 1971.

Table 1-1			
Units for Three SI Base Quantities			
Quantity	Unit Name	Unit Symbol	
Length	meter	m	
Time	second	s	
Mass	kilogram	kg	

Chapter 1 -Measurement

What is a Unit?

International System of Units

Units in Mechanics

The standard set of units is known as the S.I. system, established in 1971.

Table 1-1				
Units for Three SI Base Quantities				
Quantity	Unit Name	Unit Symbol		
Length	meter	m		
Time	second	s		
Mass	kilogram	kg		

Chapter 1 -Measurement

What is a Unit?

International System of Units

Units in Mechanics

Significant Figures

▶ 1 meter is how far light travels in 1/299792458 of a second

The standard set of units is known as the S.I. system, established in 1971.

	Table 1-1			
Units for Three SI Base Quantities				
Quantity	Unit Name	Unit Symbol		
Length	meter	m		
Time	second	s		
Mass	kilogram	kg		

- ▶ 1 meter is how far light travels in 1/299792458 of a second
- I second is defined to be the time that it takes a cesium atom's valence electron to oscillate 9192631770 times between its ground states

Chapter 1 -Measurement

What is a Unit?

International System of Units

Units in Mechanics

The standard set of units is known as the S.I. system, established in 1971.

	Table 1-1			
Units for Three SI Base Quantities				
Quantity	Unit Name	Unit Symbol		
Length	meter	m		
Time	second	s		
Mass	kilogram	kg		

- ▶ 1 meter is how far light travels in 1/299792458 of a second
- I second is defined to be the time that it takes a cesium atom's valence electron to oscillate 9192631770 times between its ground states
- 1 kilogram is the mass of a platinum-iridium cylinder kept under lock-and-key near Paris

Chapter 1 -Measurement

What is a Unit?

International System of Units

Units in Mechanics

Derived units are constructed out of base units.

Chapter 1 -Measurement

What is a Unit?

International System of Units

Units in Mechanics

Derived units are constructed out of base units.

Examples of derived units:

- Speed (m/s)
- Momentum (kg m/s)
- ► Force (kg m/s²)
- Torque (kg m^2/s^2)
- Energy (joule = kg m^2/s^2)
- Power (watt = joule/s = kg m^2/s^3)

Chapter 1 -Measurement

What is a Unit?

International System of Units

Units in Mechanics

These S.I. units are very useful in our every-day lives—but not for atomic or astronomical objects.

Chapter 1 -Measurement

What is a Unit?

International System of Units

Units in Mechanics

These S.I. units are very useful in our every-day lives—but not for atomic or astronomical objects.

We introduce scientific notation:

• Clearly, $100 = 10^2$ and $1000 = 10^3$.

Chapter 1 -Measurement

What is a Unit?

International System of Units

Units in Mechanics

These S.I. units are very useful in our every-day lives—but not for atomic or astronomical objects.

We introduce scientific notation:

- Clearly, $100 = 10^2$ and $1000 = 10^3$.
- Therefore,

$$314 = 3.14 \times 10^{2}$$

$$3141 = 3.141 \times 10^{3} \approx 3.1 \times 10^{3}$$

$$0.003141 = 3.141 \times 10^{-3} \approx 3.1 \times 10^{-3}$$

Chapter 1 -Measurement

What is a Unit?

International System of Units

Units in Mechanics

These S.I. units are very useful in our every-day lives—but not for atomic or astronomical objects.

We introduce scientific notation:

- Clearly, $100 = 10^2$ and $1000 = 10^3$.
- Therefore,

 $314 = 3.14 \times 10^{2}$ $3141 = 3.141 \times 10^{3} \approx 3.1 \times 10^{3}$ $0.003141 = 3.141 \times 10^{-3} \approx 3.1 \times 10^{-3}$

• That is, we reduce the number to the form

X.YZ
$$\times 10^N$$
,

where N is how many places we moved the decimal point.

Chapter 1 -Measurement

What is a Unit?

International System of Units

Units in Mechanics

We can simplify large numbers by using **prefixes**, so that 3.14×10^3 m becomes 3.14 km (kilometers).

Chapter 1 -Measurement

What is a Unit?

International System of Units

Units in Mechanics

We can simplify large numbers by using **prefixes**, so that 3.14×10^3 m becomes 3.14 km (kilometers).

		Tabl	e 1-2		
Prefixes fo	or SI Units				
Factor	Prefix ^a	Symbol	Factor	Prefix ^a	Symbol
1024	yotta-	Y	10^{-1}	deci-	d
10^{21}	zetta-	Z	10^{-2}	centi-	c
10^{18}	exa-	E	10^{-3}	milli-	m
10^{15}	peta-	Р	10^{-6}	micro-	μ
10^{12}	tera-	Т	10^{-9}	nano-	n
10 ⁹	giga-	G	10^{-12}	pico-	р
106	mega-	м	10^{-15}	femto-	f
10 ³	kilo-	k	10^{-18}	atto-	а
10^{2}	hecto-	h	10^{-21}	zepto-	z
10 ¹	deka-	da	10^{-24}	yocto-	У

"The most frequently used prefixes are shown in bold type.

Chapter 1 -Measurement

What is a Unit?

International System of Units

Units in Mechanics

We can simplify large numbers by using **prefixes**, so that 3.14×10^3 m becomes 3.14 km (kilometers).

		Tabl	e 1-2		
Prefixes fo	r SI Units				
Factor	Prefix ^a	Symbol	Factor	Prefix ^a	Symbol
1024	yotta-	Y	10^{-1}	deci-	d
10^{21}	zetta-	Z	10^{-2}	centi-	с
10^{18}	exa-	E	10^{-3}	milli-	m
10^{15}	peta-	Р	10^{-6}	micro-	μ
10^{12}	tera-	Т	10^{-9}	nano-	n
10 ⁹	giga-	G	10^{-12}	pico-	р
106	mega-	м	10^{-15}	femto-	f
10 ³	kilo-	k	10^{-18}	atto-	а
10^{2}	hecto-	h	10^{-21}	zepto-	z
10 ¹	deka-	da	10^{-24}	yocto-	У

"The most frequently used prefixes are shown in bold type.

Example: the distance to the moon is about

 $384,400,000 \text{ m} = 3.8 \times 10^8 \text{ m} = 0.38 \text{ Gm}.$

Chapter 1 -Measurement

What is a Unit?

International System of Units

Units in Mechanics

Approximate Lengths in Meters

Table 1-3

Some Approximate Lengths

Measurement	Length in Meters
Distance to the first galaxies formed	2×10^{26}
Distance to the Andromeda galaxy	2×10^{22}
Distance to the nearby star Proxima Centauri	4×10^{16}
Distance to Pluto	6×10^{12}
Radius of Earth	6×10^{6}
Height of Mt. Everest	9×10^{3}
Thickness of this page	1×10^{-4}
Length of a typical virus	1×10^{-8}
Radius of a hydrogen atom	5×10^{-11}
Radius of a proton	1×10^{-15}

Chapter 1 -Measurement

What is a Unit?

International System of Units

Units in Mechanics

Units in Mechanics

Approximate Times in Seconds

Table 1-4	Та	b	le		-4
-----------	----	---	----	--	----

Some Approximate Time Intervals

Measurement	Time Interval in Seconds
Lifetime of the proton (predicted)	3×10^{40}
Age of the universe	5×10^{17}
Age of the pyramid of Cheops	1×10^{11}
Human life expectancy	2×10^{9}
Length of a day	9×10^4
Time between human heartbeats	8×10^{-1}
Lifetime of the muon	2×10^{-6}
Shortest lab light pulse	1×10^{-16}
Lifetime of the most unstable particle	1×10^{-23}
The Planck time ^a	1×10^{-43}

"This is the earliest time after the big bang at which the laws of physics as we know them can be applied.

Chapter 1 -Measurement

What is a Unit?

International System of Units

Units in Mechanics

Units in Mechanics

Approximate Masses in Kilograms

Table 1-5			
Some Approximate Ma	sses		
Object	Mass in Kilograms		
Known universe	1×10^{53}		
Our galaxy	2×10^{41}		
Sun	2×10^{30}		
Moon	7×10^{22}		
Asteroid Eros	5×10^{15}		
Small mountain	1×10^{12}		
Ocean liner	7×10^{7}		
Elephant	5×10^{3}		
Grape	3×10^{-3}		
Speck of dust	7×10^{-10}		
Penicillin molecule	5×10^{-17}		
Uranium atom	4×10^{-25}		
Proton	2×10^{-27}		
Electron	9×10^{-31}		

Chapter 1 -Measurement

What is a Unit?

International System of Units

Units in Mechanics

The period of a pendulum's swing can be derived using only **dimensional analysis**.

Chapter 1 -Measurement

What is a Unit?

International System of Units

Units in Mechanics

The period of a pendulum may depend on length l, mass m and gravitational acceleration g.

$$T \propto l^a g^b m^c$$

What is a Unit?

International System of Units

Units in Mechanics

The period of a pendulum may depend on length l, mass m and gravitational acceleration g.

$$T \propto l^a g^b m^c$$

$$[\mathbf{T}] = [\mathbf{L}]^a \left(\frac{[\mathbf{L}]}{[\mathbf{T}^2]}\right)^b [\mathbf{M}]^c$$

What are *a*, *b* and *c*?

What is a Unit?

International System of Units

Units in Mechanics

The period of a pendulum may depend on length l, mass m and gravitational acceleration g.

$$T \propto l^a g^b m^c$$

$$[\mathbf{T}] = [\mathbf{L}]^a \left(\frac{[\mathbf{L}]}{[\mathbf{T}^2]}\right)^b [\mathbf{M}]^c$$

What are *a*, *b* and *c*?

Answer: a = 1/2, b = -1/2 and c = 0, so $T \propto \sqrt{l/g}$

Chapter 1 -Measurement

What is a Unit?

International System of Units

Units in Mechanics

Significant Figures

When a scientist makes a measurement, there is always some uncertainty.

Example: 8.8 ± 0.1 cm.

Chapter 1 -Measurement

What is a Unit?

International System of Units

Units in Mechanics

When a scientist makes a measurement, there is always some uncertainty.

Example: 8.8 \pm 0.1 cm. The **percent uncertainty** is

$$\frac{0.1}{8.8} \times 100\% \approx 1\%.$$

Chapter 1 -Measurement

What is a Unit?

International System of Units

Units in Mechanics

When a scientist makes a measurement, there is always some uncertainty.

Example: 8.8 \pm 0.1 cm. The **percent uncertainty** is

 $\frac{0.1}{8.8} \times 100\% \approx 1\%.$

If uncertainty is unspecified, we assume an accuracy of about one or two units of the last digit.

 $8.8~\text{cm} \rightarrow 8.8 \pm 0.1~\text{or}~8.8 \pm 0.2~\text{cm}$

Chapter 1 -Measurement

What is a Unit?

International System of Units

Units in Mechanics

How many significant figures are there?

number	sig figs
munioer	<u>sig iigs</u>
8.8	2
8.80	
0.8	
0.80	
8.0008	
80	
80.	
80.00	

Chapter 1 -Measurement

What is a Unit?

International System of Units

Units in Mechanics

Chapter 1 -Measurement

What is a Unit?

International System of Units

Units in Mechanics

$$A = lw = 11.3 \text{ cm} \times 6.8 \text{ cm} = 76.84 \text{ cm}^2 = 77 \text{ cm}^2.$$

Chapter 1 -Measurement

What is a Unit?

International System of Units

Units in Mechanics

$$A = lw = 11.3 \text{ cm} \times 6.8 \text{ cm} = 76.84 \text{ cm}^2 = 77 \text{ cm}^2.$$

Why? Well...

$$A_{min} = 11.2 \text{ cm} \times 6.7 \text{ cm} = 75.04 \text{ cm}^2$$

 $A_{max} = 11.4 \text{ cm} \times 6.9 \text{ cm} = 78.66 \text{ cm}^2$

Chapter 1 -Measurement

What is a Unit?

International System of Units

Units in Mechanics

$$A = lw = 11.3 \text{ cm} \times 6.8 \text{ cm} = 76.84 \text{ cm}^2 = 77 \text{ cm}^2.$$

Why? Well...

$$A_{min} = 11.2 \text{ cm} \times 6.7 \text{ cm} = 75.04 \text{ cm}^2$$

 $A_{max} = 11.4 \text{ cm} \times 6.9 \text{ cm} = 78.66 \text{ cm}^2$
 $\therefore A = 77 \pm 2 \text{ cm}^2$

Chapter 1 -Measurement

What is a Unit?

International System of Units

Units in Mechanics