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“To know that we know what
we know, and to know that we
do not know what we do not
know, that is true knowledge.”

-Nicolas Copernicus

David J. Starling
Penn State Hazleton
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We want to describe the rotation of a rigid body
about a fixed axis.

The object does not deform, and the axis stays put.
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The kinematic and dynamic variables we have

used so far have their rotational counterparts:

How far has the rigid body rotated?

θ =
s
r

and θ ↔ x

[note: 1 revolution = 360◦ = 2π radians]
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If θ is like position, then ∆θ is like displacement.

This is the reference line of a rigid body.

∆θ = θ2 − θ1

[note: counterclockwise is positive]
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Angular velocity ω is like linear velocity, except

x→ θ.

ωavg =
∆θ

∆t
and ω =

dθ
dt
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except v→ ω.

αavg =
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∆t
and α =

dω
dt
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The linear variables have their rotational

counterparts:

linear angular units
x θ rad
v ω dθ/dt rad/s
a α dω/dt rad/s2

We use the right-hand rule to assign direction:
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On a rigid body,

I all points trace out a circle;
I all points have the same angular displacement

∆θ = ∆s/r

I all points have the same angular velocity

ω =
dθ
dt

=
d(s/r)

dt
=

vt

r
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Taking another derivative,

α =
dω
dt

=
d(vt/r)

dt
=

at

r

s = rθ

vt = rω

at = rα

ar = v2/r = ω2r
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If the angular acceleration of a rotating object is

constant, we can derive the same constant
acceleration equations as before.

linear angular
v(t) = v0 + at ω(t) = ω0 + αt

x(t) = x0 + v0t + 0.5at2 θ(t) = θ0 + ω0t + 0.5αt2

v2 = v2
0 + 2a(x− x0) ω2 = ω2

0 + 2α(θ − θ0)
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Lecture Question 10.1
The Earth, which has an equatorial radius of 6380 km,

makes one revolution on its axis every 23.93 hours. What is

the tangential speed of Nairobi, Kenya, a city near the

equator?

(a) 37.0 m/s

(b) 74.0 m/s

(c) 148 m/s

(d) 232 m/s

(e) 465 m/s
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Rotational motion is generated by torque:

τ = rF sinφ.

I τ = (r)(F sinφ) = rFt

I τ = (r sinφ)(F) = r⊥F

I r⊥ = r sin(φ) is the moment arm
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When a torque is applied to an object, it

accelerates angularly.

Ft = mat

τ = Ftr = matr

τ = m(rα)r

τ = (mr2)α

τ = Iα
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When torque is applied to an object, it resists this

motion. For a point particle, we found

τ = (mr2)α = Iα.

For many point particles in a rigid body, we sum them up:

I =
∑

i

mir2
i →

∫
r2dm.
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Moment of Inertia for common shapes:
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If Icom is known for an axis through the center of

mass, then any parallel axis has

I = Icom + Md2

a distance d away.



Chapter 10 - Rotation

Rotational Variables

Torque

Moment of Inertia

Rotational Energy

Rotational Energy

To find the kinetic energy of a rotating object, split

it up into small masses:

K =
1
2

m1v2
1 +

1
2

m2v2
2 + . . .

=
∑

i

1
2

miv2
i

=
∑

i

1
2

mi(riω)2

=
∑

i

1
2

mir2
i ω

2

=
1
2

(∑
i

mir2
i

)
ω2

K =
1
2

Iω2
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We can change the kinetic energy by doing work

(W = ∆K, right?):

W =

∫ xf

xi

F dx→ W =

∫ θf

θi

τ dθ

[Constant torque: W = τ(θf − θi).]

Power is just the derivative of work, so

P =
dW
dt

= τω.

[compare: P = Fv]
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Lecture 10.4
Two solid cylinders are rotating about an axis that passes

through the center of both ends of each cylinder. Cylinder A

has three times the mass and twice the radius of cylinder B,

but they have the same rotational kinetic energy. What is the

ratio of the angular velocities, ωA/ωB, for these two

cylinders?

(a) 0.29

(b) 0.50

(c) 1.0

(d) 2.0

(e) 4.0
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