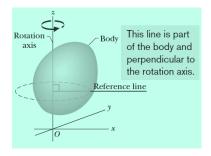


"To know that we know what we know, and to know that we do not know what we do not know, that is true knowledge."

-Nicolas Copernicus

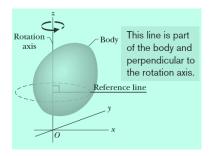
David J. Starling Penn State Hazleton PHYS 211 Chapter 10 - Rotation

We want to describe the rotation of a **rigid body** *about a* **fixed axis**.



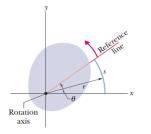
Chapter 10 - Rotation

We want to describe the rotation of a **rigid body** *about a* **fixed axis**.



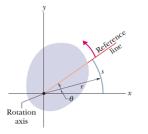
The object does not deform, and the axis stays put.

The kinematic and dynamic variables we have used so far have their rotational counterparts:



Chapter 10 - Rotation

The kinematic and dynamic variables we have used so far have their rotational counterparts:

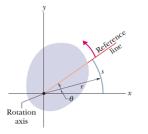


How far has the rigid body rotated?

$$\theta = \frac{s}{r}$$
 and $\theta \leftrightarrow x$

Chapter 10 - Rotation

The kinematic and dynamic variables we have used so far have their rotational counterparts:



How far has the rigid body rotated?

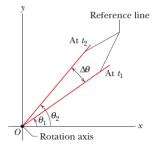
$$\theta = \frac{s}{r}$$
 and $\theta \leftrightarrow x$

[note: 1 revolution = $360^\circ = 2\pi$ radians]

Chapter 10 - Rotation

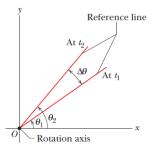
Rotational Energy

If θ is like position, then $\Delta \theta$ is like displacement.



Chapter 10 - Rotation

If θ is like position, then $\Delta \theta$ is like displacement.



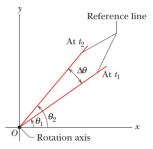
This is the *reference line* of a rigid body.

2

$$\Delta \theta = \theta_2 - \theta_1$$

Chapter 10 - Rotation

If θ is like position, then $\Delta \theta$ is like displacement.



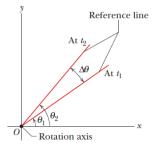
This is the *reference line* of a rigid body.

$$\Delta \theta = \theta_2 - \theta_1$$

[note: counterclockwise is positive]

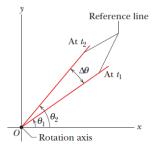
Chapter 10 - Rotation

Angular velocity ω is like linear velocity, except $x \rightarrow \theta$.



Chapter 10 - Rotation

Angular velocity ω is like linear velocity, except $x \rightarrow \theta$.

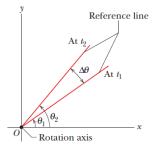


$$\omega_{avg} = \frac{\Delta \theta}{\Delta t}$$
 and $\omega = \frac{d\theta}{dt}$

Chapter 10 - Rotation

Angular acceleration α is like linear acceleration,

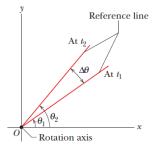
except $v \to \omega$.



Chapter 10 - Rotation

Angular acceleration α is like linear acceleration,

except $v \to \omega$.



$$\alpha_{avg} = \frac{\Delta\omega}{\Delta t}$$
 and $\alpha = \frac{d\omega}{dt}$

Chapter 10 - Rotation

The linear variables have their rotational

counterparts:

linear	angular		units
x	θ		rad
v	ω	$d\theta/dt$	rad/s
а	α	$d\omega/dt$	rad/s ²

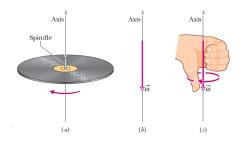
Chapter 10 - Rotation

The linear variables have their rotational

counterparts:

linear	angular		units
x	θ		rad
v	ω	$d\theta/dt$	rad/s
а	α	$d\omega/dt$	rad/s ²

We use the right-hand rule to assign direction:



Chapter 10 - Rotation

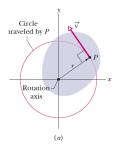
On a rigid body,

- all points trace out a circle;
- all points have the same angular displacement

 $\Delta\theta=\Delta s/r$

▶ all points have the *same angular velocity*

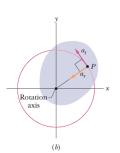
$$\omega = \frac{d\theta}{dt} = \frac{d(s/r)}{dt} = \frac{v_t}{r}$$



Chapter 10 - Rotation

Taking another derivative,

$$\alpha = \frac{d\omega}{dt} = \frac{d(v_t/r)}{dt} = \frac{a_t}{r}$$



Chapter 10 - Rotation

Taking another derivative,

$$\alpha = \frac{d\omega}{dt} = \frac{d(v_t/r)}{dt} = \frac{a_t}{r}$$

$$s = r\theta$$

$$v_t = r\omega$$

$$a_r = v^2/r = \omega^2 r$$

Chapter 10 - Rotation

If the angular acceleration of a rotating object is constant, we can derive the same **constant acceleration equations** as before.

linear	angular	
$v(t) = v_0 + at$	$\omega(t) = \omega_0 + \alpha t$	
$x(t) = x_0 + v_0 t + 0.5at^2$	$\theta(t) = \theta_0 + \omega_0 t + 0.5\alpha t^2$	
$v^2 = v_0^2 + 2a(x - x_0)$	$\omega^2 = \omega_0^2 + 2\alpha(\theta - \theta_0)$	

Lecture Question 10.1

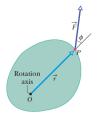
The Earth, which has an equatorial radius of 6380 km, makes one revolution on its axis every 23.93 hours. What is the tangential speed of Nairobi, Kenya, a city near the equator?

- (a) 37.0 m/s
- **(b)** 74.0 m/s
- (c) 148 m/s
- (d) 232 m/s
- (e) 465 m/s

Chapter 10 - Rotation

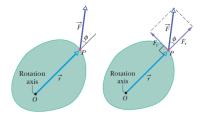
Rotational motion is generated by torque:

 $\tau = rF\sin\phi.$



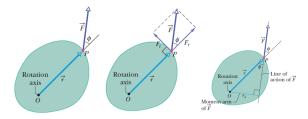
Rotational motion is generated by torque:

 $\tau = rF\sin\phi.$



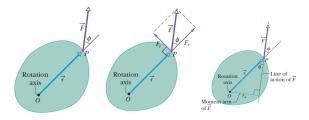
Rotational motion is generated by torque:

 $\tau = rF\sin\phi.$



Rotational motion is generated by torque:

 $\tau = rF\sin\phi.$



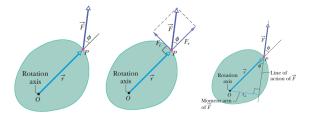
$$\tau = (r)(F\sin\phi) = rF_t$$

$$\tau = (r\sin\phi)(F) = r_{\perp}F$$

Chapter 10 - Rotation

Rotational motion is generated by torque:

 $\tau = rF\sin\phi.$



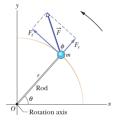
$$\blacktriangleright \tau = (r)(F\sin\phi) = rF_t$$

$$\bullet \ \tau = (r\sin\phi)(F) = r_{\perp}F$$

• $r_{\perp} = r \sin(\phi)$ is the moment arm

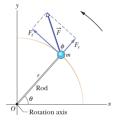
Chapter 10 - Rotation

When a torque is applied to an object, it accelerates angularly.



$$F_t = ma_t$$

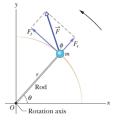
When a torque is applied to an object, it accelerates angularly.



$$F_t = ma_t$$

$$\tau = F_t r = ma_t r$$

When a torque is applied to an object, it accelerates angularly.



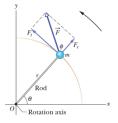
$$F_t = ma_t$$

$$\tau = F_t r = ma_t r$$

$$\tau = m(r\alpha)r$$

Chapter 10 - Rotation

When a torque is applied to an object, it accelerates angularly.



$$F_t = ma_t$$

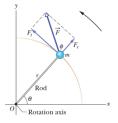
$$\tau = F_t r = ma_t r$$

$$\tau = m(r\alpha)r$$

$$\tau = (mr^2)\alpha$$

Chapter 10 - Rotation

When a torque is applied to an object, it accelerates angularly.



$$F_t = ma_t$$

$$\tau = F_t r = ma_t r$$

$$\tau = m(r\alpha)r$$

$$\tau = (mr^2)\alpha$$

$$\tau = I\alpha$$

When torque is applied to an object, it resists this motion. For a point particle, we found

$$\tau = (mr^2)\alpha = I\alpha.$$

When torque is applied to an object, it resists this motion. For a point particle, we found

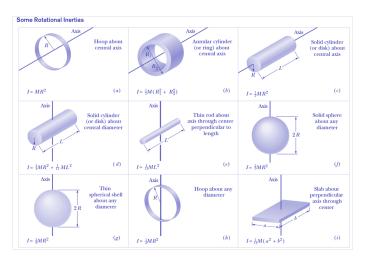
$$\tau = (mr^2)\alpha = I\alpha.$$

For many point particles in a rigid body, we sum them up:

$$I=\sum_i m_i r_i^2 \to \int r^2 dm.$$

Chapter 10 - Rotation

Moment of Inertia



Moment of Inertia for common shapes:

Chapter 10 - Rotation

Rotational Variables

Torque

Moment of Inertia

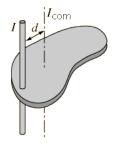
Rotational Energy

Moment of Inertia

If I_{com} is known for an axis through the center of mass, then any parallel axis has

$$I = I_{com} + Md^2$$

a distance d away.



Chapter 10 - Rotation

To find the kinetic energy of a rotating object, split it up into small masses:

$$K = \frac{1}{2}m_1v_1^2 + \frac{1}{2}m_2v_2^2 + \dots$$

Chapter 10 - Rotation

To find the kinetic energy of a rotating object, split it up into small masses:

$$K = \frac{1}{2}m_1v_1^2 + \frac{1}{2}m_2v_2^2 + \dots$$
$$= \sum_i \frac{1}{2}m_iv_i^2$$

Chapter 10 - Rotation

To find the kinetic energy of a rotating object, split it up into small masses:

٠

$$K = \frac{1}{2}m_1v_1^2 + \frac{1}{2}m_2v_2^2 + \dots$$
$$= \sum_i \frac{1}{2}m_iv_i^2$$
$$= \sum_i \frac{1}{2}m_i(r_i\omega)^2$$

Chapter 10 - Rotation

To find the kinetic energy of a rotating object, split it up into small masses:

. .

$$K = \frac{1}{2}m_1v_1^2 + \frac{1}{2}m_2v_2^2 + .$$

= $\sum_i \frac{1}{2}m_iv_i^2$
= $\sum_i \frac{1}{2}m_i(r_i\omega)^2$
= $\sum_i \frac{1}{2}m_ir_i^2\omega^2$

To find the kinetic energy of a rotating object, split it up into small masses:

.

$$K = \frac{1}{2}m_1v_1^2 + \frac{1}{2}m_2v_2^2 + ...$$

= $\sum_i \frac{1}{2}m_iv_i^2$
= $\sum_i \frac{1}{2}m_i(r_i\omega)^2$
= $\sum_i \frac{1}{2}m_ir_i^2\omega^2$
= $\frac{1}{2}\left(\sum_i m_ir_i^2\right)\omega^2$

Chapter 10 - Rotation

To find the kinetic energy of a rotating object, split it up into small masses:

٠

$$K = \frac{1}{2}m_1v_1^2 + \frac{1}{2}m_2v_2^2 + \dots$$
$$= \sum_i \frac{1}{2}m_iv_i^2$$
$$= \sum_i \frac{1}{2}m_i(r_i\omega)^2$$
$$= \sum_i \frac{1}{2}m_ir_i^2\omega^2$$
$$= \frac{1}{2}\left(\sum_i m_ir_i^2\right)\omega^2$$
$$K = \frac{1}{2}I\omega^2$$

Chapter 10 - Rotation

We can change the kinetic energy by doing work $(W = \Delta K, right?)$:

$$W = \int_{x_i}^{x_f} F \, dx \to W = \int_{ heta_i}^{ heta_f} au \, d heta$$

We can change the kinetic energy by doing work $(W = \Delta K, right?)$:

$$W = \int_{x_i}^{x_f} F \, dx \to W = \int_{ heta_i}^{ heta_f} au \, d heta$$

[Constant torque: $W = \tau(\theta_f - \theta_i)$.]

We can change the kinetic energy by doing work $(W = \Delta K, right?)$:

$$W = \int_{x_i}^{x_f} F \, dx \to W = \int_{\theta_i}^{\theta_f} \tau \, d\theta$$

[Constant torque: $W = \tau(\theta_f - \theta_i)$.]

Power is just the derivative of work, so

$$P = \frac{dW}{dt} = \tau\omega.$$

We can change the kinetic energy by doing work $(W = \Delta K, right?)$:

$$W = \int_{x_i}^{x_f} F \, dx \to W = \int_{\theta_i}^{\theta_f} \tau \, d\theta$$

[Constant torque: $W = \tau(\theta_f - \theta_i)$.]

Power is just the derivative of work, so

$$P = \frac{dW}{dt} = \tau\omega.$$

[compare: P = Fv]

TABLE 10-3

Some Corresponding Relations for Translational and Rotational Motion

Pure Translation (Fixed Di	irection)	Pure Rotation (Fixed Axis)		
Position Velocity	$ \begin{array}{l} x \\ v = dx/dt \end{array} $	Angular position Angular velocity	$\begin{aligned} \theta \\ \omega &= d\theta / dt \end{aligned}$	
Acceleration	a = dv/dt	Angular acceleration	$\alpha = d\omega/dt$	
Mass	m	Rotational inertia	Ι	
Newton's second law	$F_{\rm net} = ma$	Newton's second law	$\tau_{\rm net} = I \alpha$	
Work	$W = \int F dx$	Work	$W = \int \tau d\theta$	
Kinetic energy	$K = \frac{1}{2}mv^2$	Kinetic energy	$K = \frac{1}{2}I\omega^2$	
Power (constant force)	P = Fv	Power (constant torque)	$P = \tau \omega$	
Work-kinetic energy theorem	$W = \Delta K$	Work-kinetic energy theorem	$W = \Delta K$	

Lecture 10.4

Two solid cylinders are rotating about an axis that passes through the center of both ends of each cylinder. Cylinder A has three times the mass and twice the radius of cylinder B, but they have the same rotational kinetic energy. What is the ratio of the angular velocities, ω_A/ω_B , for these two cylinders?

- **(a)** 0.29
- **(b)** 0.50
- **(c)** 1.0
- **(d)** 2.0
- **(e)** 4.0

