Chapter 10 - Rotation

Rotational Variables

Torque

"To know that we know what we know, and to know that we do not know what we do not know, that is true knowledge."

Moment of Inertia
Rotational Energy

David J. Starling
Penn State Hazleton
PHYS 211

Rotational Variables

We want to describe the rotation of a rigid body about a fixed axis.

Rotational Variables

We want to describe the rotation of a rigid body about a fixed axis.

Rotational Variables
Torque
Moment of Inertia
Rotational Energy

The object does not deform, and the axis stays put.

Rotational Variables

The kinematic and dynamic variables we have used so far have their rotational counterparts:

Rotational Variables
Torque
Moment of Inertia
Rotational Energy

Rotational Variables

The kinematic and dynamic variables we have used so far have their rotational counterparts:

Rotational Variables
Torque
Moment of Inertia
Rotational Energy

How far has the rigid body rotated?

$$
\theta=\frac{s}{r} \quad \text { and } \quad \theta \leftrightarrow x
$$

Rotational Variables

The kinematic and dynamic variables we have used so far have their rotational counterparts:

Rotational Variables
Torque
Moment of Inertia
Rotational Energy

How far has the rigid body rotated?

$$
\theta=\frac{s}{r} \quad \text { and } \quad \theta \leftrightarrow x
$$

[note: 1 revolution $=360^{\circ}=2 \pi$ radians]

Rotational Variables

If θ is like position, then $\Delta \theta$ is like displacement.

Rotational Variables
Torque
Moment of Inertia

Rotational Variables

If θ is like position, then $\Delta \theta$ is like displacement.

This is the reference line of a rigid body.

$$
\Delta \theta=\theta_{2}-\theta_{1}
$$

Rotational Variables

If θ is like position, then $\Delta \theta$ is like displacement.

This is the reference line of a rigid body.

$$
\Delta \theta=\theta_{2}-\theta_{1}
$$

[note: counterclockwise is positive]

Rotational Variables

Angular velocity ω is like linear velocity, except $x \rightarrow \theta$.

Rotational Variables
Torque
Moment of Inertia
Rotational Energy

Rotational Variables

Angular velocity ω is like linear velocity, except $x \rightarrow \theta$.

$$
\omega_{a v g}=\frac{\Delta \theta}{\Delta t} \quad \text { and } \quad \omega=\frac{d \theta}{d t}
$$

Torque
Moment of Inertia
Rotational Energy

Rotational Variables

Angular acceleration α is like linear acceleration, except $v \rightarrow \omega$.

Rotational Variables
Torque
Moment of Inertia
Rotational Energy

Rotational Variables

Angular acceleration α is like linear acceleration, except $v \rightarrow \omega$.

$$
\alpha_{a v g}=\frac{\Delta \omega}{\Delta t} \quad \text { and } \quad \alpha=\frac{d \omega}{d t}
$$

Torque
Moment of Inertia
Rotational Energy

Rotational Variables

The linear variables have their rotational counterparts:

linear	angular		units
x	θ		rad
v	ω	$d \theta / d t$	$\mathrm{rad} / \mathrm{s}$
a	α	$d \omega / d t$	$\mathrm{rad} / \mathrm{s}^{2}$

Rotational Variables
Torque
Moment of Inertia
Rotational Energy

Rotational Variables

The linear variables have their rotational counterparts:

linear	angular		units
x	θ		rad
v	ω	$d \theta / d t$	$\mathrm{rad} / \mathrm{s}$
a	α	$d \omega / d t$	$\mathrm{rad} / \mathrm{s}^{2}$

Rotational Variables
Torque
Moment of Inertia
Rotational Energy

We use the right-hand rule to assign direction:

(a)

(b)

(c)

Rotational Variables

On a rigid body,

- all points trace out a circle;
- all points have the same angular displacement

Rotational Variables
Torque
Moment of Inertia
Rotational Energy

$$
\Delta \theta=\Delta s / r
$$

- all points have the same angular velocity

$$
\omega=\frac{d \theta}{d t}=\frac{d(s / r)}{d t}=\frac{v_{t}}{r}
$$

(a)

Rotational Variables

Taking another derivative,

$$
\alpha=\frac{d \omega}{d t}=\frac{d\left(v_{t} / r\right)}{d t}=\frac{a_{t}}{r}
$$

(b)

Rotational Variables

Taking another derivative,

$$
\alpha=\frac{d \omega}{d t}=\frac{d\left(v_{t} / r\right)}{d t}=\frac{a_{t}}{r}
$$

Rotational Variables
Torque
Moment of Inertia
Rotational Energy

Rotational Variables

If the angular acceleration of a rotating object is
constant, we can derive the same constant acceleration equations as before.

linear	angular
$v(t)=v_{0}+a t$	$\omega(t)=\omega_{0}+\alpha t$
$x(t)=x_{0}+v_{0} t+0.5 a t^{2}$	$\theta(t)=\theta_{0}+\omega_{0} t+0.5 \alpha t^{2}$
$v^{2}=v_{0}^{2}+2 a\left(x-x_{0}\right)$	$\omega^{2}=\omega_{0}^{2}+2 \alpha\left(\theta-\theta_{0}\right)$

Rotational Variables

Lecture Question 10.1

The Earth, which has an equatorial radius of 6380 km , makes one revolution on its axis every 23.93 hours. What is the tangential speed of Nairobi, Kenya, a city near the equator?
(a) $37.0 \mathrm{~m} / \mathrm{s}$
(b) $74.0 \mathrm{~m} / \mathrm{s}$
(c) $148 \mathrm{~m} / \mathrm{s}$
(d) $232 \mathrm{~m} / \mathrm{s}$
(e) $465 \mathrm{~m} / \mathrm{s}$

Torque

Rotational motion is generated by torque:

$$
\tau=r F \sin \phi
$$

Torque
Moment of Inertia
Rotational Energy

Torque

Rotational motion is generated by torque:

$$
\tau=r F \sin \phi
$$

Rotational Variables
Torque
Moment of Inertia
Rotational Energy

Torque

Rotational motion is generated by torque:

$$
\tau=r F \sin \phi
$$

Rotational Variables
Torque
Moment of Inertia
Rotational Energy

Torque

Rotational motion is generated by torque:

$$
\tau=r F \sin \phi
$$

- $\tau=(r)(F \sin \phi)=r F_{t}$
- $\tau=(r \sin \phi)(F)=r_{\perp} F$

Torque

Rotational motion is generated by torque:

$$
\tau=r F \sin \phi
$$

Rotational Variables
Torque
Moment of Inertia
Rotational Energy

- $\tau=(r)(F \sin \phi)=r F_{t}$
- $\tau=(r \sin \phi)(F)=r_{\perp} F$
- $r_{\perp}=r \sin (\phi)$ is the moment arm

Torque

When a torque is applied to an object, it accelerates angularly.

Rotational Variables

Torque
Moment of Inertia
Rotational Energy

Torque

When a torque is applied to an object, it accelerates angularly.

Rotational Variables

Torque
Moment of Inertia
Rotational Energy

Torque

When a torque is applied to an object, it accelerates angularly.

Rotational Variables
Torque
Moment of Inertia
Rotational Energy

Torque

When a torque is applied to an object, it accelerates angularly.

Rotational Variables
Torque
Moment of Inertia
Rotational Energy

Torque

When a torque is applied to an object, it accelerates angularly.

Rotational Variables
Torque
Moment of Inertia
Rotational Energy

Moment of Inertia

When torque is applied to an object, it resists this motion. For a point particle, we found

$$
\tau=\left(m r^{2}\right) \alpha=I \alpha
$$

Torque
Moment of Inertia
Rotational Energy

Moment of Inertia

When torque is applied to an object, it resists this motion. For a point particle, we found

$$
\tau=\left(m r^{2}\right) \alpha=I \alpha
$$

For many point particles in a rigid body, we sum them up:

$$
I=\sum_{i} m_{i} r_{i}^{2} \rightarrow \int r^{2} d m
$$

Moment of Inertia

Moment of Inertia for common shapes:

Some Rotational Inertias

Rotational Variables
Torque
Moment of Inertia

Rotational Energy

Moment of Inertia

If $I_{\text {com }}$ is known for an axis through the center of mass, then any parallel axis has

$$
I=I_{c o m}+M d^{2}
$$

a distance d away.

Rotational Variables
Torque
Moment of Inertia
Rotational Energy

Rotational Energy

To find the kinetic energy of a rotating object, split it up into small masses:

$$
K=\frac{1}{2} m_{1} v_{1}^{2}+\frac{1}{2} m_{2} v_{2}^{2}+\ldots
$$

Rotational Variables
Torque
Moment of Inertia
Rotational Energy

Rotational Energy

To find the kinetic energy of a rotating object, split it up into small masses:

$$
\begin{aligned}
K & =\frac{1}{2} m_{1} v_{1}^{2}+\frac{1}{2} m_{2} v_{2}^{2}+\ldots \\
& =\sum_{i} \frac{1}{2} m_{i} v_{i}^{2}
\end{aligned}
$$

Rotational Energy

To find the kinetic energy of a rotating object, split it up into small masses:

$$
\begin{aligned}
K & =\frac{1}{2} m_{1} v_{1}^{2}+\frac{1}{2} m_{2} v_{2}^{2}+\ldots \\
& =\sum_{i} \frac{1}{2} m_{i} v_{i}^{2} \\
& =\sum_{i} \frac{1}{2} m_{i}\left(r_{i} \omega\right)^{2}
\end{aligned}
$$

Rotational Variables
Torque
Moment of Inertia
Rotational Energy

Rotational Energy

To find the kinetic energy of a rotating object, split it up into small masses:

$$
\begin{aligned}
K & =\frac{1}{2} m_{1} v_{1}^{2}+\frac{1}{2} m_{2} v_{2}^{2}+\ldots \\
& =\sum_{i} \frac{1}{2} m_{i} v_{i}^{2} \\
& =\sum_{i} \frac{1}{2} m_{i}\left(r_{i} \omega\right)^{2} \\
& =\sum_{i} \frac{1}{2} m_{i} r_{i}^{2} \omega^{2}
\end{aligned}
$$

Rotational Variables
Torque
Moment of Inertia
Rotational Energy

Rotational Energy

To find the kinetic energy of a rotating object, split it up into small masses:

$$
\begin{aligned}
K & =\frac{1}{2} m_{1} v_{1}^{2}+\frac{1}{2} m_{2} v_{2}^{2}+\ldots \\
& =\sum_{i} \frac{1}{2} m_{i} v_{i}^{2} \\
& =\sum_{i} \frac{1}{2} m_{i}\left(r_{i} \omega\right)^{2} \\
& =\sum_{i} \frac{1}{2} m_{i} r_{i}^{2} \omega^{2} \\
& =\frac{1}{2}\left(\sum_{i} m_{i} r_{i}^{2}\right) \omega^{2}
\end{aligned}
$$

Rotational Variables
Torque
Moment of Inertia
Rotational Energy

Rotational Energy

To find the kinetic energy of a rotating object, split it up into small masses:

$$
\begin{aligned}
K & =\frac{1}{2} m_{1} v_{1}^{2}+\frac{1}{2} m_{2} v_{2}^{2}+\ldots \\
& =\sum_{i} \frac{1}{2} m_{i} v_{i}^{2} \\
& =\sum_{i} \frac{1}{2} m_{i}\left(r_{i} \omega\right)^{2} \\
& =\sum_{i} \frac{1}{2} m_{i} r_{i}^{2} \omega^{2} \\
& =\frac{1}{2}\left(\sum_{i} m_{i} r_{i}^{2}\right) \omega^{2} \\
K & =\frac{1}{2} I \omega^{2}
\end{aligned}
$$

Rotational Variables
Torque
Moment of Inertia
Rotational Energy

Rotational Energy

We can change the kinetic energy by doing work ($W=\Delta K$, right?):

$$
W=\int_{x_{i}}^{x_{f}} F d x \rightarrow W=\int_{\theta_{i}}^{\theta_{f}} \tau d \theta
$$

Torque
Moment of Inertia
Rotational Energy

Rotational Energy

We can change the kinetic energy by doing work ($W=\Delta K$, right?):

$$
W=\int_{x_{i}}^{x_{f}} F d x \rightarrow W=\int_{\theta_{i}}^{\theta_{f}} \tau d \theta
$$

[Constant torque: $W=\tau\left(\theta_{f}-\theta_{i}\right)$.]

Rotational Energy

We can change the kinetic energy by doing work ($W=\Delta K$, right?):

$$
W=\int_{x_{i}}^{x_{f}} F d x \rightarrow W=\int_{\theta_{i}}^{\theta_{f}} \tau d \theta
$$

[Constant torque: $W=\tau\left(\theta_{f}-\theta_{i}\right)$.]

Power is just the derivative of work, so

$$
P=\frac{d W}{d t}=\tau \omega
$$

Rotational Energy

We can change the kinetic energy by doing work ($W=\Delta K$, right?):

$$
W=\int_{x_{i}}^{x_{f}} F d x \rightarrow W=\int_{\theta_{i}}^{\theta_{f}} \tau d \theta
$$

[Constant torque: $W=\tau\left(\theta_{f}-\theta_{i}\right)$.]

Power is just the derivative of work, so

$$
P=\frac{d W}{d t}=\tau \omega
$$

[compare: $P=F v$]

Rotational Energy

TABLE 10-3

Rotational Variables
Torque
Moment of Inertia
Rotational Energy

Some Corresponding Relations for Translational and Rotational Motion

Pure Translation (Fixed Direction)		Pure Rotation (Fixed Axis)	
Position	x	Angular position	θ
Velocity	$v=d x / d t$	Angular velocity	$\omega=d \theta / d t$
Acceleration	$a=d v / d t$	Angular acceleration	$\alpha=d \omega / d t$
Mass	m	Rotational inertia	I
Newton's second law	$F_{\text {net }}=m a$	Newton's second law	$\tau_{\text {net }}=I \alpha$
Work	$W=\int F d x$	Work	$W=\int \tau d \theta$
Kinetic energy	$K=\frac{1}{2} m v^{2}$	Kinetic energy	$K=\frac{1}{2} I \omega^{2}$
Power (constant force)	$P=F v$	Power (constant torque)	$P=\tau \omega$
Work-kinetic energy theorem	$W=\Delta K$	Work-kinetic energy theorem	$W=\Delta K$

Rotational Energy

Lecture 10.4

Two solid cylinders are rotating about an axis that passes through the center of both ends of each cylinder. Cylinder A

Rotational Variables
Torque
Moment of Inertia
has three times the mass and twice the radius of cylinder B , but they have the same rotational kinetic energy. What is the ratio of the angular velocities, ω_{A} / ω_{B}, for these two cylinders?
(a) 0.29
(b) 0.50
(c) 1.0
(d) 2.0
(e) 4.0

