Chapter 13-Gravity

$$
\begin{aligned}
& \text { "The moon is essentially gray, } \\
& \text { no color. It looks like plaster } \\
& \text { of Paris, like dirty beach sand } \\
& \text { with lots of footprints in it." } \\
& \text {-James A. Lovell } \\
& \text { (from the Apollo } 13 \text { mission) }
\end{aligned}
$$

David J. Starling
Penn State Hazleton PHYS 211

Newton's Law of Gravitation

The gravitational force is a mutual force between two separated objects (distance r) of masses m_{1} and m_{2} given by

Newton's Law of Gravitation

Gravitational Potential Energy

Kepler's Laws

$$
\begin{aligned}
F & =G \frac{m_{1} m_{2}}{r^{2}} \\
G & =6.67 \times 10^{-11} \mathrm{~m}^{3} / \mathrm{kg}-\mathrm{s}^{2}
\end{aligned}
$$

Newton's Law of Gravitation

The gravitational force is a mutual force between two separated objects (distance r) of masses m_{1} and m_{2} given by

Newton's Law of Gravitation

Gravitational Potential Energy

Kepler's Laws

$$
\begin{aligned}
F & =G \frac{m_{1} m_{2}}{r^{2}} \\
G & =6.67 \times 10^{-11} \mathrm{~m}^{3} / \mathrm{kg}-\mathrm{s}^{2}
\end{aligned}
$$

This is the pull on particle 1 due to particle 2.

Draw the vector with its tail on particle 1 to show the pulling.
(b)

A unit vector points along the radial axis.
(c)

Newton's Law of Gravitation

From Newton's third law, we know that this force must have an equal but opposite pair.

Newton's Law of Gravitation

Gravitational Potential Energy

Kepler's Laws

Newton's Law of Gravitation

Shell Theorem: a uniform sphere of matter attracts a particle that is outside as if all the sphere's mass were concentrated at its center.

Newton's Law of Gravitation
Gravitational Potential Energy
Kepler's Laws

Newton's Law of Gravitation

Shell Theorem: a uniform sphere of matter attracts a particle that is outside as if all the sphere's mass were concentrated at its center.

Uniform spherical objects just become points.

Newton's Law of Gravitation

Principle of Superposition: If N objects interact

 with particle 1 gravitationally, the total force is just the vector sum.Newton's Law of Gravitation

Gravitational Potential Energy

Kepler's Laws

$$
\begin{aligned}
& \vec{F}_{1, \text { net }}=\vec{F}_{12}+\vec{F}_{13}+\cdots+\vec{F}_{1 N} \\
& \vec{F}_{1, \text { net }}=\sum_{i=2}^{N} \vec{F}_{1 i}
\end{aligned}
$$

Newton's Law of Gravitation

We can apply Newton's Law of Gravitation to an object (m) near the surface of the Earth (M):

$$
\begin{aligned}
\vec{F} & =G \frac{M m}{r^{2}}=m a_{g} \\
a_{g} & =\frac{G M}{r^{2}}
\end{aligned}
$$

Table 13-1
Variation of a_{g} with Altitude

Altitude (km)	$\begin{gathered} a_{g} \\ \left(\mathrm{~m} / \mathrm{s}^{2}\right) \end{gathered}$	Altitude Example
0	9.83	Mean Earth surface
8.8	9.80	Mt. Everest
36.6	9.71	Highest crewed balloon
400	8.70	Space shuttle orbit
35700	0.225	Communications satellite

Newton's Law of Gravitation

Gravitational Potential Energy

Kepler's Laws

Newton's Law of Gravitation

The force due to gravity on the surface of the earth is not consistently $9.83 \mathrm{~m} / \mathrm{s}^{2}$.

- Earth is not a perfect sphere;
- the mass within the Earth is not uniformly distributed;

Newton's Law of Gravitation

The force due to gravity on the surface of the earth is not consistently $9.83 \mathrm{~m} / \mathrm{s}^{2}$.

- Earth is not a perfect sphere;
- the mass within the Earth is not uniformly distributed;
- Earth rotates.

Newton's Law of Gravitation

Lecture Question 13.1

If an object at the surface of the Earth has a weight W, what would be the weight of the object if it was transported to the surface of a planet that is one-sixth the mass of Earth and has a radius one third that of Earth?
(a) $3 W$
(b) $4 W / 3$
(c) W
(d) $3 W / 2$
(e) $W / 3$

Gravitational Potential Energy

Gravity is a conservative force, so lets find its

 potential energy using $\Delta U=-W$.$$
\Delta U=-W
$$

Newton's Law of

Gravitation
Gravitational Potential
Energy
Kepler's Laws

Gravitational Potential Energy

Gravity is a conservative force, so lets find its potential energy using $\Delta U=-W$.

$$
\begin{aligned}
\Delta U & =-W \\
U(\infty)-U(R) & =-\int_{R}^{\infty} \vec{F}(r) \cdot d \vec{r}
\end{aligned}
$$

Newton's Law of

Gravitation
Gravitational Potential
Energy
Kepler's Laws

Gravitational Potential Energy

Gravity is a conservative force, so lets find its potential energy using $\Delta U=-W$.

$$
\begin{aligned}
\Delta U & =-W \\
U(\infty)-U(R) & =-\int_{R}^{\infty} \vec{F}(r) \cdot d \vec{r} \\
& =-G M m \int_{R}^{\infty} \frac{1}{r^{2}} d r
\end{aligned}
$$

Gravitational Potential Energy

Gravity is a conservative force, so lets find its potential energy using $\Delta U=-W$.

$$
\begin{aligned}
\Delta U & =-W \\
U(\infty)-U(R) & =-\int_{R}^{\infty} \vec{F}(r) \cdot d \vec{r} \\
& =-G M m \int_{R}^{\infty} \frac{1}{r^{2}} d r \\
& =-\left[\frac{G M m}{r}\right]_{R}^{\infty}
\end{aligned}
$$

Newton's Law of
Gravitation
Gravitational Potential
Energy
Kepler's Laws

Gravitational Potential Energy

Newton's Law of
Gravitation
Gravitational Potential
Energy
Kepler's Laws

$$
\begin{aligned}
\Delta U & =-W \\
U(\infty)-U(R) & =-\int_{R}^{\infty} \vec{F}(r) \cdot d \vec{r} \\
& =-G M m \int_{R}^{\infty} \frac{1}{\bar{r}^{2}} d r \\
& =-\left[\frac{G M m}{r}\right]_{R}^{\infty} \\
-U(R) & =-0+\frac{G M m}{R}
\end{aligned}
$$

Gravitational Potential Energy

Newton's Law of
Gravitation
Gravitational Potential
Energy
Kepler's Laws

$$
\begin{aligned}
\Delta U & =-W \\
U(\infty)-U(R) & =-\int_{R}^{\infty} \vec{F}(r) \cdot d \vec{r} \\
& =-G M m \int_{R}^{\infty} \frac{1}{r^{2}} d r \\
& =-\left[\frac{G M m}{r}\right]_{R}^{\infty} \\
-U(R) & =-0+\frac{G M m}{R} \\
U(R) & =-\frac{G M m}{R}
\end{aligned}
$$

Gravitational Potential Energy

The change in gravitational potential energy ΔU is path independent.

Newton's Law of Gravitation

Gravitational Potential
Energy
Kepler's Laws

$$
\Delta U=-W
$$

Gravitational Potential Energy

Newton's Law of
Gravitation
Gravitational Potential
Energy
Kepler's Laws

Gravitational Potential Energy

Newton's Law of
Gravitation
Gravitational Potential
Energy
Kepler's Laws

Gravitational Potential Energy

Table 13-2

Newton's Law of
Gravitation
Gravitational Potential
Energy
Kepler's Laws

Some Escape Speeds

Body	Mass (kg)	Radius (m)	Escape Speed $(\mathrm{km} / \mathrm{s})$
Ceres a	1.17×10^{21}	3.8×10^{5}	0.64
Earth's moon a	7.36×10^{22}	1.74×10^{6}	2.38
Earth	5.98×10^{24}	6.37×10^{6}	11.2
Jupiter	1.90×10^{27}	7.15×10^{7}	59.5
Sun	1.99×10^{30}	6.96×10^{8}	618
Sirius B b	2×10^{30}	1×10^{7}	5200
Neutron star c	2×10^{30}	1×10^{4}	2×10^{5}

${ }^{a}$ The most massive of the asteroids.
${ }^{b} \mathrm{~A}$ white dwarf (a star in a final stage of evolution) that is a companion of the bright star Sirius.
${ }^{c}$ The collapsed core of a star that remains after that star has exploded in a supernova event.

Gravitational Potential Energy

Lecture Question 13.2

A large asteroid collides with a planet of mass m orbiting a

Newton's Law of Gravitation

Gravitational Potential Energy

Kepler's Laws star of mass M at a distance r. As a result of the collision, the planet is knocked out of its orbit, such that it leaves the solar system. Which of the following expressions gives the minimum amount of energy that the planet must receive in the collision to be removed from the solar system?
(a) $G M m / r$
(b) $G M m / r^{2}$
(c) $G M m / \sqrt{r}$
(d) Gm / r
(e) $G m / r^{2}$

Kepler's Laws

Johannes Kepler was a 17th century mathematician who developed three laws of planetary motion.

Newton's Law of Gravitation

Gravitational Potential Energy

Kepler's Laws

1. The Law of Orbits: all planets move in elliptical orbits with the Sun at one focus.

Kepler's Laws

2. The Law of Areas: a line that connects a planet to the Sun sweeps out equals areas in equal time intervals (i.e., $d A / d t=$ constant $)$.

Newton's Law of

Gravitation

Gravitational Potential
Energy
Kepler's Laws

Kepler's Laws

2. The Law of Areas: a line that connects a planet to the Sun sweeps out equals areas in equal time intervals (i.e., $d A / d t=$ constant $)$.

Newton's Law of
Gravitation

Gravitational Potential
Energy
Kepler's Laws

$$
\begin{aligned}
\Delta A & =\frac{1}{2} r^{2}(\Delta \theta) \rightarrow d A=\frac{1}{2} r^{2} d \theta \\
\frac{d A}{d t} & =\frac{1}{2} r^{2} \frac{d \theta}{d t}=\frac{1}{2} r^{2} \omega
\end{aligned}
$$

Kepler's Laws

2. The Law of Areas: a line that connects a planet to the Sun sweeps out equals areas in equal time intervals (i.e., $d A / d t=$ constant).

Newton's Law of
Gravitation
Gravitational Potential
Energy
Kepler's Laws

$$
\begin{aligned}
\Delta A & =\frac{1}{2} r^{2}(\Delta \theta) \rightarrow d A=\frac{1}{2} r^{2} d \theta \\
\frac{d A}{d t} & =\frac{1}{2} r^{2} \frac{d \theta}{d t}=\frac{1}{2} r^{2} \omega
\end{aligned}
$$

$$
L=r p_{\perp}=r m v_{\perp}=r m r \omega \rightarrow \frac{d A}{d t}=\frac{L}{2 m}
$$

Kepler's Laws

3. The Law of Periods: the square of the period of any planet is proportional to the cube of the semimajor axis of its orbit.

Newton's Law of
Gravitation
Gravitational Potential
Energy
Kepler's Laws

Kepler's Laws

3. The Law of Periods: the square of the period of any planet is proportional to the cube of the semimajor axis of its orbit.

Newton's Law of Gravitation

Gravitational Potential Energy

Kepler's Laws

Kepler's Laws

3. The Law of Periods: the square of the period of any planet is proportional to the cube of the semimajor axis of its orbit.

$$
\begin{aligned}
F & =m a \\
\frac{G M m}{r^{2}} & =m\left(r \omega^{2}\right)=m r^{2}\left(\frac{2 \pi}{T}\right)^{2} \\
T^{2} & =\left(\frac{4 \pi^{2}}{G M}\right) r^{3}
\end{aligned}
$$

Newton's Law of Gravitation

Gravitational Potential Energy

Kepler's Laws

Kepler's Laws

Table 13-3

Kepler's Law of Periods for the Solar System

	Semimajor Axis	Period	T^{2} / a^{3} $\left(10^{-34}\right.$
Planet	$a\left(10^{10} \mathrm{~m}\right)$	$T(\mathrm{y})$	$\left.\mathrm{y}^{2} / \mathrm{m}^{3}\right)$
Mercury	5.79	0.241	2.99
Venus	10.8	0.615	3.00
Earth	15.0	1.00	2.96
Mars	22.8	1.88	2.98
Jupiter	77.8	11.9	3.01
Saturn	143	29.5	2.98
Uranus	287	84.0	2.98
Neptune	450	165	2.99
Pluto	590	248	2.99

Newton's Law of
Gravitation
Gravitational Potential
Energy
Kepler's Laws

Kepler's Laws

When one object orbits a much larger object, mechanical energy is conserved.

For a circular orbit,

$$
F=m a \rightarrow \frac{G M m}{r^{2}}=m \frac{v^{2}}{r}
$$

Newton's Law of Gravitation

Gravitational Potential
Energy
Kepler's Laws

Kepler's Laws

When one object orbits a much larger object, mechanical energy is conserved.

For a circular orbit,

$$
F=m a \rightarrow \frac{G M m}{r^{2}}=m \frac{v^{2}}{r} \rightarrow \frac{G M m}{2 r}=\frac{1}{2} m v^{2}=K
$$

Newton's Law of Gravitation

Gravitational Potential
Energy
Kepler's Laws

Kepler's Laws

When one object orbits a much larger object, mechanical energy is conserved.

For a circular orbit,

$$
F=m a \rightarrow \frac{G M m}{r^{2}}=m \frac{v^{2}}{r} \rightarrow \frac{G M m}{2 r}=\frac{1}{2} m v^{2}=K
$$

$$
\begin{aligned}
E & =K+U \\
& =\frac{G M m}{2 r}-\frac{G M m}{r} \\
E & =-\frac{G M m}{2 r}
\end{aligned}
$$

Newton's Law of Gravitation

Gravitational Potential
Energy
Kepler's Laws

Kepler's Laws

When one object orbits a much larger object, mechanical energy is conserved.

For a circular orbit,

$$
F=m a \rightarrow \frac{G M m}{r^{2}}=m \frac{v^{2}}{r} \rightarrow \frac{G M m}{2 r}=\frac{1}{2} m v^{2}=K
$$

$$
\begin{aligned}
E & =K+U \\
& =\frac{G M m}{2 r}-\frac{G M m}{r} \\
E & =-\frac{G M m}{2 r}
\end{aligned}
$$

(for an elliptical orbit, $E=-G M m / 2 a$)

Kepler's Laws

The total energy of an orbiting body is negative.

$$
E=-\frac{G M m}{2 r}
$$

Kepler's Laws
Newton's Law of
Gravitation

Gravitational Potential
Energy

This is a plot of a
satellite's energies
versus orbit radius.

