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“The moon is essentially gray,
no color. It looks like plaster
of Paris, like dirty beach sand
with lots of footprints in it.”

-James A. Lovell
(from the Apollo 13 mission)

David J. Starling
Penn State Hazleton
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Newton’s Law of Gravitation

The gravitational force is a mutual force between

two separated objects (distance r) of masses m1

and m2 given by

F = G
m1m2

r2

G = 6.67× 10−11 m3/kg-s2.
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From Newton’s third law, we know that this force

must have an equal but opposite pair.
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Shell Theorem: a uniform sphere of matter

attracts a particle that is outside as if all the

sphere’s mass were concentrated at its center.

Uniform spherical objects just become points.
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Newton’s Law of Gravitation

Principle of Superposition: If N objects interact

with particle 1 gravitationally, the total force is

just the vector sum.

~F1,net = ~F12 + ~F13 + · · ·+ ~F1N

~F1,net =

N∑
i=2

~F1i
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Newton’s Law of Gravitation

We can apply Newton’s Law of Gravitation to an

object (m) near the surface of the Earth (M):

~F = G
Mm
r2 = mag

ag =
GM
r2
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The force due to gravity on the surface of the

earth is not consistently 9.83 m/s2.

I Earth is not a perfect sphere;

I the mass within the Earth is not uniformly distributed;

I Earth rotates.
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Lecture Question 13.1
If an object at the surface of the Earth has a weight W, what
would be the weight of the object if it was transported to the
surface of a planet that is one-sixth the mass of Earth and
has a radius one third that of Earth?

(a) 3W

(b) 4W/3

(c) W

(d) 3W/2

(e) W/3
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Gravity is a conservative force, so lets find its

potential energy using ∆U = −W.

∆U = −W

U(∞)− U(R) = −
∫ ∞

R

~F(r) · d~r

= −GMm
∫ ∞

R

1
r2 dr

= −
[

GMm
r

]∞
R

− U(R) = −0 +
GMm

R

U(R) = −GMm
R
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The change in gravitational potential energy ∆U

is path independent.

∆U = −W
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Gravitational Potential Energy

The force from this potential energy is just the

derivative (since we used an integral to derive it).

F(r) = −dU
dr

= − d
dr

(
−GMm

r

)
= −GMm

r2

The minus sign indicates the force points radially inward.
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Lecture Question 13.2
A large asteroid collides with a planet of mass m orbiting a
star of mass M at a distance r. As a result of the collision,
the planet is knocked out of its orbit, such that it leaves the
solar system. Which of the following expressions gives the
minimum amount of energy that the planet must receive in
the collision to be removed from the solar system?

(a) GMm/r

(b) GMm/r2

(c) GMm/
√

r

(d) Gm/r

(e) Gm/r2
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Kepler’s Laws

Johannes Kepler was a 17th century

mathematician who developed three laws of

planetary motion.

1. The Law of Orbits: all planets move in elliptical orbits
with the Sun at one focus.
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2. The Law of Areas: a line that connects a planet to the
Sun sweeps out equals areas in equal time intervals (i.e.,
dA/dt = constant).

∆A =
1
2

r2(∆θ)→ dA =
1
2

r2dθ

dA
dt

=
1
2

r2 dθ
dt

=
1
2

r2ω

L = rp⊥ = rmv⊥ = rmrω → dA
dt

=
L

2m
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3. The Law of Periods: the square of the period of any
planet is proportional to the cube of the semimajor axis of
its orbit.

F = ma

GMm
r2 = m(rω2) = mr2

(
2π
T

)2

T2 =

(
4π2

GM

)
r3
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When one object orbits a much larger object,

mechanical energy is conserved.

For a circular orbit,

F = ma→ GMm
r2 = m

v2

r

→ GMm
2r

=
1
2

mv2 = K

E = K + U

=
GMm

2r
− GMm

r

E = −GMm
2r

(for an elliptical orbit, E = −GMm/2a)
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The total energy of an orbiting body is negative.

E = −GMm
2r
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