Chapter 2 - Vectors

Vectors vs. Scalars
Adding Vectors
Geometrically
Adding Vectors by
Components
Multiplying Vectors

Roger: We have clearance, Clarence.
Clarence: Roger, Roger. What's our vector, Victor?

- from Airplane! (1980)

David J. Starling
Penn State Hazleton
PHYS 211

Vectors vs. Scalars

A vector is a quantity that indicates both magnitude and direction.

Vectors vs. Scalars
Adding Vectors
Geometrically
Adding Vectors by
Components
Multiplying Vectors

Vectors vs. Scalars

A vector is a quantity that indicates both magnitude and direction.

Examples: position, velocity and acceleration

Vectors vs. Scalars

A scalar is a quantity that indicates only magnitude.

Vectors vs. Scalars

A scalar is a quantity that indicates only magnitude.

Examples: time, speed, temperature, distance

Vectors vs. Scalars

We represent a vector as an arrow with a direction and a length (magnitude).

(a)

Vectors vs. Scalars

We represent a vector as an arrow with a direction and a length (magnitude).

(a)

These are displacement vectors. Vectors are written mathematically as: \vec{V} or \mathbf{V}.

Adding Vectors Geometrically

Vectors \vec{a} and \vec{b} can be added geometrically to give the sum $\vec{s}=\vec{a}+\vec{b}$.

Vectors vs. Scalars
Adding Vectors
Geometrically
Adding Vectors by
Components
Multiplying Vectors

Adding Vectors Geometrically

Vectors \vec{a} and \vec{b} can be added geometrically to give the sum $\vec{s}=\vec{a}+\vec{b}$.

Vectors vs. Scalars
Adding Vectors
Geometrically
Adding Vectors by
Components
Multiplying Vectors

- This works for any vector (position, velocity, electric field, etc.)

Adding Vectors Geometrically

Vectors \vec{a} and \vec{b} can be added geometrically to give the sum $\vec{s}=\vec{a}+\vec{b}$.

Vectors vs. Scalars
Adding Vectors
Geometrically
Adding Vectors by
Components
Multiplying Vectors

- This works for any vector (position, velocity, electric field, etc.)
- The size of the vector is called its magnitude

$$
|\vec{s}|=s
$$

Adding Vectors Geometrically

Here are some (familiar!) properties of vector addition.

Vectors vs. Scalars
Adding Vectors
Geometrically
Adding Vectors by
Components
Multiplying Vectors
(a) Commutative: $\vec{a}+\vec{b}=\vec{b}+\vec{a}$
(b) Associative: $(\vec{a}+\vec{b})+\vec{c}=\vec{a}+(\vec{b}+\vec{c})$
(c) Additive inverse exists: $\vec{a}+(-\vec{a})=\overrightarrow{0}$
(d) Subtraction: $\vec{a}-\vec{b}=\vec{a}+(-\vec{b})=\vec{c}$
(e) Distributive: $m \times(\vec{a}+\vec{b})=m \vec{a}+m \vec{b}$

Adding Vectors Geometrically

Lecture Question 2.1

You are standing in a soccer field. If you walk 10 m north, and then 3 m east, you arrive at point B. However, if you had walked 3 m east, and then 10 m north, you'd still arrive at point B . Which vector property does this demonstrate?
(a) Commutative
(b) Associative
(c) Additive inverse
(d) Subtraction
(e) Distributive

Adding Vectors by Components

The component of a vector is the projection of the vector onto that axis.

The components and the
(c) vector form a right triangle.

Adding Vectors by Components

The component of a vector is the projection of the vector onto that axis.

Vectors vs. Scalars
Adding Vectors
Geometrically
Adding Vectors by
Components
Multiplying Vectors

The projections are found using trigonometry

$$
\sin (\theta)=a_{y} / a \text { and } \cos (\theta)=a_{x} / a
$$

Adding Vectors by Components

The same equations apply, even if the vector points in a different quadrant.

Adding Vectors by
Components
Multiplying Vectors

Adding Vectors by Components

The same equations apply, even if the vector points in a different quadrant.

Adding Vectors by
Components
Multiplying Vectors
Vectors vs. Scalars
Adding Vectors
Geometrically

$$
b=\sqrt{b_{x}^{2}+b_{y}^{2}} \quad \text { and } \quad \tan (\theta)=\frac{b_{y}}{b_{x}}
$$

Adding Vectors by Components

All unit vectors have length/magnitude equal to

 one. They are written with a hat: \hat{a}.Vectors vs. Scalars
Adding Vectors
Geometrically
Adding Vectors by
Components
Multiplying Vectors

Adding Vectors by Components

All unit vectors have length/magnitude equal to one. They are written with a hat: \hat{a}.

Vectors vs. Scalars
Adding Vectors
Geometrically
Adding Vectors by
Components
Multiplying Vectors

The common unit vectors are: \hat{i}, \hat{j} and \hat{k} pointing in the x, y and z directions.

Adding Vectors by Components

Vectors can be written in terms of their components and unit vectors.

Vectors vs. Scalars
Adding Vectors
Geometrically
Adding Vectors by
Components
Multiplying Vectors

Adding Vectors by Components

Vectors can be written in terms of their components and unit vectors.

Vectors vs. Scalars
Adding Vectors
Geometrically
Adding Vectors by
Components
Multiplying Vectors

$$
\vec{a}=a_{x} \hat{i}+a_{y} \hat{j}
$$

a_{x} scales the \hat{i} vector so that it has length $a_{x} \times 1$.
a_{y} scales the \hat{j} vector so that it has length $a_{y} \times 1$.

Adding Vectors by Components

Adding two vectors can be done component by component.

Vectors vs. Scalars
Adding Vectors
Geometrically
Adding Vectors by
Components
Multiplying Vectors

Adding Vectors by Components

Adding two vectors can be done component by component.

Vectors vs. Scalars
Adding Vectors
Geometrically
Adding Vectors by
Components
Multiplying Vectors

$$
\begin{aligned}
\vec{s} & =\vec{a}+\vec{b} \\
s_{x} & =a_{x}+b_{x} \\
s_{y} & =a_{y}+b_{y} \\
s_{z} & =a_{z}+b_{z}
\end{aligned}
$$

Adding Vectors by Components

Adding two vectors can be done component by component.

Vectors vs. Scalars
Adding Vectors
Geometrically
Adding Vectors by
Components
Multiplying Vectors

$$
\begin{aligned}
\vec{s} & =\vec{a}+\vec{b} \\
s_{x} & =a_{x}+b_{x} \\
s_{y} & =a_{y}+b_{y} \\
s_{z} & =a_{z}+b_{z} \\
\vec{s} & =s_{x} \hat{i}+s_{y} \hat{j}+s_{z} \hat{k} \\
& =\left(a_{x}+b_{x}\right) \hat{i}+\left(a_{y}+b_{y}\right) \hat{j}+\left(a_{z}+b_{z}\right) \hat{k}
\end{aligned}
$$

Adding Vectors by Components

Subtracting two vectors is just like adding the negative of a vector.

$$
\vec{d}=\vec{a}-\vec{b}
$$

Vectors vs. Scalars
Adding Vectors
Geometrically
Adding Vectors by
Components
Multiplying Vectors

Adding Vectors by Components

Subtracting two vectors is just like adding the negative of a vector.

$$
\begin{aligned}
\vec{d} & =\vec{a}-\vec{b} \\
d_{x} & =a_{x}-b_{x} \\
d_{y} & =a_{y}-b_{y} \\
d_{z} & =a_{z}-b_{z}
\end{aligned}
$$

Vectors vs. Scalars
Adding Vectors
Geometrically
Adding Vectors by Components

Multiplying Vectors

Adding Vectors by Components

Subtracting two vectors is just like adding the negative of a vector.

Vectors vs. Scalars
Adding Vectors
Geometrically
Adding Vectors by
Components
Multiplying Vectors

$$
\begin{aligned}
\vec{d} & =\vec{a}-\vec{b} \\
d_{x} & =a_{x}-b_{x} \\
d_{y} & =a_{y}-b_{y} \\
d_{z} & =a_{z}-b_{z} \\
\vec{d} & =d_{x} \hat{i}+d_{y} \hat{j}+d_{z} \hat{k} \\
& =\left(a_{x}-b_{x}\right) \hat{i}+\left(a_{y}-b_{y}\right) \hat{j}+\left(a_{z}-b_{z}\right) \hat{k}
\end{aligned}
$$

Adding Vectors by Components

The choice of axes is arbitrary. For any problem, you can choose the axes as you see fit.

Vectors vs. Scalars
Adding Vectors
Geometrically
Adding Vectors by
Components
Multiplying Vectors

Rotating the axes changes the components but not the vector.

Multiplying Vectors

1. A vector can be scaled (made larger or smaller) by a scalar:

$$
\vec{B}=c \vec{A}
$$

Vectors vs. Scalars
Adding Vectors
Geometrically
Adding Vectors by
Components
Multiplying Vectors

Multiplying Vectors

1. A vector can be scaled (made larger or smaller) by a scalar:

$$
\vec{B}=c \vec{A}
$$

- If $c>1, \vec{B}$ is c times larger than \vec{A}

Multiplying Vectors

1. A vector can be scaled (made larger or smaller) by a scalar:

$$
\vec{B}=c \vec{A}
$$

- If $c>1, \vec{B}$ is c times larger than \vec{A}
- If $0<c<1, \vec{B}$ is shorter than \vec{A}

Multiplying Vectors

1. A vector can be scaled (made larger or smaller) by a scalar:

$$
\vec{B}=c \vec{A}
$$

- If $c>1, \vec{B}$ is c times larger than \vec{A}
- If $0<c<1, \vec{B}$ is shorter than \vec{A}
- If $c<0, \vec{A}$ and \vec{B} are in opposite directions.

Multiplying Vectors

2. The scalar product is the multiplication of two vectors that results in a scalar.

(a)

$$
\vec{a} \cdot \vec{b}=a b \cos (\phi)
$$

Multiplying Vectors

2. The scalar product is the multiplication of two vectors that results in a scalar.

Vectors vs. Scalars
Adding Vectors
Geometrically
Adding Vectors by
Components
Multiplying Vectors

(a)

$$
\vec{a} \cdot \vec{b}=a b \cos (\phi)
$$

Note: $\vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{a}$ (commutative)

Multiplying Vectors

The scalar product tells us how much two vectors are parallel.

Multiplying Vectors

The scalar product tells us how much two vectors are parallel.

- By components: $\vec{a} \cdot \vec{b}=a_{x} b_{x}+a_{y} b_{y}+a_{z} b_{z}$

Multiplying Vectors

The scalar product tells us how much two vectors are parallel.

- By components: $\vec{a} \cdot \vec{b}=a_{x} b_{x}+a_{y} b_{y}+a_{z} b_{z}$

$$
\begin{aligned}
& \hat{i} \cdot \hat{i}=\hat{j} \cdot \hat{j}=\hat{k} \cdot \hat{k}=1 \\
& \hat{i} \cdot \hat{j}=\hat{j} \cdot \hat{k}=\hat{k} \cdot \hat{i}=0
\end{aligned}
$$

Multiplying Vectors

3. The vector product is the multiplication of two vectors that results in another vector.

Vectors vs. Scalars
Adding Vectors
Geometrically
Adding Vectors by
Components
Multiplying Vectors

Multiplying Vectors

3. The vector product is the multiplication of two vectors that results in another vector.

Vectors vs. Scalars
Adding Vectors
Geometrically
Adding Vectors by
Components
Multiplying Vectors

(a)

$$
\begin{aligned}
\vec{c} & =\vec{a} \times \vec{b} \\
c & =a b \sin (\phi)
\end{aligned}
$$

Multiplying Vectors

3. The vector product is the multiplication of two vectors that results in another vector.

Vectors vs. Scalars
Adding Vectors
Geometrically
Adding Vectors by
Components
Multiplying Vectors

(a)

$$
\begin{aligned}
\vec{c} & =\vec{a} \times \vec{b} \\
c & =a b \sin (\phi)
\end{aligned}
$$

Note: $\vec{a} \times \vec{b}=-\vec{b} \times \vec{a}$ (anti-commutative)

Multiplying Vectors

The vector product tells us how perpendicular two vectors are. The new vector's direction is given by the right-hand rule.

Vectors vs. Scalars
Adding Vectors
Geometrically
Adding Vectors by
Components
Multiplying Vectors

Multiplying Vectors

The vector product tells us how perpendicular two vectors are. The new vector's direction is given by the right-hand rule.

Vectors vs. Scalars
Adding Vectors
Geometrically
Adding Vectors by
Components
Multiplying Vectors

- \vec{c} is always perpendicular to \vec{a} and \vec{b}

Multiplying Vectors

The vector product tells us how perpendicular two vectors are. The new vector's direction is given by the right-hand rule.

Vectors vs. Scalars
Adding Vectors
Geometrically
Adding Vectors by
Components
Multiplying Vectors

- \vec{c} is always perpendicular to \vec{a} and \vec{b}

$$
\hat{i} \times \hat{i}=\hat{j} \times \hat{j}=\hat{k} \times \hat{k}=0
$$

Multiplying Vectors

The vector product tells us how perpendicular two vectors are. The new vector's direction is given by the right-hand rule.

Vectors vs. Scalars
Adding Vectors
Geometrically
Adding Vectors by
Components
Multiplying Vectors

- \vec{c} is always perpendicular to \vec{a} and \vec{b}

$$
\begin{array}{r}
\hat{i} \times \hat{i}=\hat{j} \times \hat{j}=\hat{k} \times \hat{k}=0 \\
\hat{i} \times \hat{j}=\hat{k} \quad \hat{j} \times \hat{k}=\hat{i} \quad \hat{k} \times \hat{i}=\hat{j}
\end{array}
$$

Multiplying Vectors

Lecture Question 2.3

For the two vectors $\vec{A}=1.1 \hat{i}+2.0 \hat{j}$ and $\vec{B}=1.0 \hat{i}-1.0 \hat{j}$, find $\vec{A} \cdot \vec{B}$.
(a) zero
(b) -0.9
(c) $1.1 \hat{i}-2.0 \hat{j}$
(d) 3.1
(e) $0.1 \hat{i}+1.0 \hat{j}$

