Chapter 3 - Motion Along a Straight Line

Position, Displacement and Distance

Average Velocity and
 Speed

Instantaneous Velocity
and Speed
Acceleration

David J. Starling
 Penn State Hazleton PHYS 211

Position, Displacement and Distance

Kinematics is the study of motion.

Position, Displacement and Distance

Average Velocity and
Speed
Instantaneous Velocity
and Speed
Acceleration

Position is the coordinate $x(t)$ of the object in question.

Position, Displacement and Distance

Displacement Δx is the change in the position of an object.

$$
\Delta x=x_{2}-x_{1} \text { (can be negative!) }
$$

Position, Displacement and Distance

Average Velocity and
 Speed

Instantaneous Velocity and Speed

Acceleration

Position, Displacement and Distance

Displacement Δx is the change in the position of an object.

$$
\Delta x=x_{2}-x_{1} \text { (can be negative!) }
$$

Position, Displacement and Distance

Average Velocity and
Speed
Instantaneous Velocity and Speed

Acceleration

Position, Displacement and Distance

Distance d is the total amount of ground an object covers during its motion.

Average Velocity and Speed

Instantaneous Velocity and Speed

Acceleration

Position, Displacement and Distance

Distance d is the total amount of ground an object covers during its motion.

Position, Displacement and Distance

Average Velocity and Speed

Instantaneous Velocity and Speed

Acceleration

Is distance ever less than displacement?

Position, Displacement and Distance

Position, Displacement and Distance

Average Velocity and
Speed
Instantaneous Velocity
and Speed
Summary:
Acceleration

- Position is a function: $x(t)$
- Displacement is the change in position: $\Delta x=x_{2}-x_{1}$
- Distance is how much ground is covered: d, always positive!

Position, Displacement and Distance

Lecture Question 3.1

A race car, traveling at constant speed, makes one lap around a circular track of radius r in a time t. Which one of the following statements concerning this car is true?
(a) The displacement is constant.
(b) The instantaneous velocity is constant.
(c) The average speed is the same over any time interval.
(d) The average velocity is the same over any time interval.
(e) The average speed and the average velocity are equal over the same time interval.

Position, Displacement and Distance

Average Velocity and
Speed
Instantaneous Velocity and Speed

Acceleration

Average Velocity and Speed

Average Velocity $v_{\text {avg }}$ is the displacement divided by the time interval.

$$
v_{a v g}=\frac{\Delta x}{\Delta t}=\frac{x_{2}-x_{1}}{t_{2}-t_{1}}
$$

Position, Displacement and Distance

Average Velocity and
 Speed

Instantaneous Velocity and Speed

Acceleration

Average Velocity and Speed

Find the average velocity:

Position, Displacement and Distance

Average Velocity and
 Speed

Instantaneous Velocity
and Speed
Acceleration

Average Velocity and Speed

Find the average velocity:

Position, Displacement and Distance

Average Velocity and
 Speed

Instantaneous Velocity and Speed

Acceleration

$$
v_{a v g}=\frac{x_{2}-x_{1}}{t_{2}-t_{1}}=\frac{2-(-4)}{4-1}=2 \mathrm{~m} / \mathrm{s}
$$

Average Velocity and Speed

Average Speed $s_{\text {avg }}$ is the distance divided by the time interval.

$$
s_{a v g}=\frac{d}{\Delta t}>0
$$

Position, Displacement and Distance

Average Velocity and
Speed
Instantaneous Velocity
and Speed
Acceleration

Average Velocity and Speed

Average Speed $s_{\text {avg }}$ is the distance divided by the time interval.

$$
s_{a v g}=\frac{d}{\Delta t}>0
$$

Position, Displacement and Distance

Average Velocity and
 Speed

Instantaneous Velocity and Speed

Acceleration

How does $s_{\text {avg }}$ compare to $v_{\text {avg }}$?

Average Velocity and Speed

You drive for 8.4 km down a road at $70 \mathrm{~km} / \mathrm{h}$ before you run
Instantaneous Velocity out of gas. You walk another 2.0 km in 30 minutes. What is your overall displacement during this time?
(a) 2.0 km
(b) 2.1 km
(c) 10 km
(d) 590 km

Average Velocity and Speed

You drive for 8.4 km down a road at $70 \mathrm{~km} / \mathrm{h}$ before you run out of gas. You walk another 2.0 km in 30 minutes. How long does this take?

Average Velocity and
 Speed

Instantaneous Velocity
and Speed
Acceleration
(a) 0.12 hr
(b) 0.50 hr
(c) 30.12 min
(d) 0.62 hr
(e) 30.12 hr

Average Velocity and Speed

Lecture Question 3.2

You drive for 8.4 km down a road at $70 \mathrm{~km} / \mathrm{h}$ before you run out of gas. You walk another 2.0 km in 30 minutes. What is your average velocity during this time?
(a) $4 \mathrm{~km} / \mathrm{hr}$
(b) $17 \mathrm{~km} / \mathrm{hr}$
(c) $37 \mathrm{~km} / \mathrm{hr}$
(d) $70 \mathrm{~km} / \mathrm{hr}$

Average Velocity and
 Speed

Instantaneous Velocity
and Speed
Acceleration

Instantaneous Velocity and Speed

Instantaneous velocity v is the average velocity
during an infinitely short time period.

$$
v=\lim _{\Delta t \rightarrow 0} \frac{\Delta x}{\Delta t}=\frac{d x}{d t}
$$

Position, Displacement and Distance

Average Velocity and
 Speed

Instantaneous Velocity and Speed

Acceleration

Instantaneous Velocity and Speed

Instantaneous velocity v is the average velocity
during an infinitely short time period.

$$
v=\lim _{\Delta t \rightarrow 0} \frac{\Delta x}{\Delta t}=\frac{d x}{d t}
$$

Position, Displacement and Distance

Average Velocity and
 Speed

Instantaneous Velocity and Speed

Acceleration

Instantaneous Velocity and Speed

Like average velocity, instantaneous velocity v has a "direction" and can be negative.

Position, Displacement and Distance

Average Velocity and
 Speed

Instantaneous Velocity and Speed

Acceleration

Instantaneous Velocity and Speed

Like average velocity, instantaneous velocity v has a "direction" and can be negative.

Average Velocity and Speed

Instantaneous Velocity and Speed

Acceleration

Instantaneous velocity is the slope of this curve at each moment in time!

Instantaneous Velocity and Speed

Instantaneous speed s is the average speed
during an infinitely short time period.

$$
s=\lim _{\Delta t \rightarrow 0} \frac{d}{\Delta t}
$$

Position, Displacement and Distance

Average Velocity and
 Speed

Instantaneous Velocity and Speed

Acceleration

Instantaneous Velocity and Speed

Instantaneous speed s is the average speed
during an infinitely short time period.

$$
s=\lim _{\Delta t \rightarrow 0} \frac{d}{\Delta t}
$$

Position, Displacement and Distance

Average Velocity and Speed

Instantaneous Velocity and Speed

Acceleration

The magnitude of s is equal to the magnitude of v since $d=|\Delta x|$ during a short period of time.

$$
s=v=\frac{d x}{d t}
$$

Acceleration

Average acceleration $a_{\text {avg }}$ is the change in velocity divided by the time interval.

Position, Displacement and Distance

Average Velocity and
 Speed

Instantaneous Velocity
and Speed
Acceleration

Colonel J. P. Stapp in a rocket sled.

Acceleration

Instantaneous acceleration a is the average acceleration during an infinitely short time period.

Position, Displacement and Distance

Average Velocity and
 Speed

Instantaneous Velocity
and Speed
Acceleration

$$
a=\lim _{\Delta t \rightarrow 0} \frac{\Delta v}{\Delta t}
$$

Acceleration

Instantaneous acceleration a is the average acceleration during an infinitely short time period.

Average Velocity and
 Speed

Instantaneous Velocity
and Speed
Acceleration

$$
a=\lim _{\Delta t \rightarrow 0} \frac{\Delta v}{\Delta t}=\frac{d v}{d t}=\frac{d^{2} x}{d t^{2}}
$$

Acceleration

Instantaneous acceleration a is the average
acceleration during an infinitely short time period.

(a)

$$
a=\lim _{\Delta t \rightarrow 0} \frac{\Delta v}{\Delta t}=\frac{d v}{d t}=\frac{d^{2} x}{d t^{2}}
$$

(b)

Position, Displacement and Distance

Average Velocity and
 Speed

Instantaneous Velocity
and Speed
Acceleration

Acceleration

In many cases, $a=$ constant. In this case, we obtain three very useful equations.

$$
\begin{equation*}
a=a_{a v g}=\frac{v_{2}-v_{1}}{t_{2}-t_{1}} \rightarrow v_{2}=v_{1}+a \Delta t \tag{1}
\end{equation*}
$$

Position, Displacement and Distance

Average Velocity and Speed

Instantaneous Velocity and Speed

Acceleration

Acceleration

In many cases, $a=$ constant. In this case, we obtain three very useful equations.

$$
\begin{equation*}
a=a_{a v g}=\frac{v_{2}-v_{1}}{t_{2}-t_{1}} \rightarrow v_{2}=v_{1}+a \Delta t \tag{1}
\end{equation*}
$$

Position, Displacement and Distance

Average Velocity and Speed

Instantaneous Velocity and Speed

Acceleration

Also,

$$
v_{a v g}=\frac{x_{2}-x_{1}}{t_{2}-t_{1}} \rightarrow x_{2}=x_{1}+v_{a v g} \Delta t
$$

Acceleration

In many cases, $a=$ constant. In this case, we obtain three very useful equations.

$$
\begin{equation*}
a=a_{a v g}=\frac{v_{2}-v_{1}}{t_{2}-t_{1}} \rightarrow v_{2}=v_{1}+a \Delta t \tag{1}
\end{equation*}
$$

Position, Displacement and Distance

Average Velocity and Speed

Instantaneous Velocity and Speed

Acceleration

Also,

$$
v_{a v g}=\frac{x_{2}-x_{1}}{t_{2}-t_{1}} \rightarrow x_{2}=x_{1}+v_{a v g} \Delta t
$$

To replace $v_{\text {avg }}$, consider:

(a)

(b)

(c)

Acceleration

In many cases, $a=$ constant. In this case, we obtain three very useful equations.

$$
\begin{equation*}
a=a_{a v g}=\frac{v_{2}-v_{1}}{t_{2}-t_{1}} \rightarrow v_{2}=v_{1}+a \Delta t \tag{1}
\end{equation*}
$$

Position, Displacement and Distance

Average Velocity and
 Speed

Instantaneous Velocity and Speed

Acceleration

Also,

$$
v_{a v g}=\frac{x_{2}-x_{1}}{t_{2}-t_{1}} \rightarrow x_{2}=x_{1}+v_{a v g} \Delta t
$$

To replace $v_{\text {avg }}$, consider:

Acceleration

In many cases, $a=$ constant. In this case, we obtain three very useful equations.

$$
\begin{equation*}
x_{2}=x_{1}+v_{1} \Delta t+\frac{1}{2} a \Delta t^{2} \tag{2}
\end{equation*}
$$

Position, Displacement and Distance

Average Velocity and Speed

Instantaneous Velocity and Speed

Acceleration

Acceleration

In many cases, $a=$ constant. In this case, we obtain three very useful equations.

$$
\begin{equation*}
x_{2}=x_{1}+v_{1} \Delta t+\frac{1}{2} a \Delta t^{2} \tag{2}
\end{equation*}
$$

Finally, if we eliminate Δt by combining Eqs. (1) and (2), we get:

$$
\Delta t=\frac{v_{2}-v_{1}}{a}
$$

Position, Displacement and Distance

Average Velocity and Speed

Instantaneous Velocity and Speed

Acceleration

Acceleration

In many cases, $a=$ constant. In this case, we obtain three very useful equations.

$$
\begin{equation*}
x_{2}=x_{1}+v_{1} \Delta t+\frac{1}{2} a \Delta t^{2} \tag{2}
\end{equation*}
$$

Position, Displacement and Distance

Average Velocity and
 Speed

Instantaneous Velocity and Speed

Acceleration

Finally, if we eliminate Δt by combining Eqs. (1) and (2), we get:

$$
\begin{aligned}
\Delta t & =\frac{v_{2}-v_{1}}{a} \\
x_{2} & =x_{1}+v_{1}\left(\frac{v_{2}-v_{1}}{a}\right)+\frac{1}{2} a\left(\frac{v_{2}-v_{1}}{a}\right)^{2}
\end{aligned}
$$

Acceleration

In many cases, $a=$ constant. In this case, we obtain three very useful equations.

$$
\begin{equation*}
x_{2}=x_{1}+v_{1} \Delta t+\frac{1}{2} a \Delta t^{2} \tag{2}
\end{equation*}
$$

Position, Displacement and Distance

Average Velocity and
Speed
Instantaneous Velocity and Speed

Acceleration

Finally, if we eliminate Δt by combining Eqs. (1) and (2), we get:

$$
\begin{gather*}
\Delta t=\frac{v_{2}-v_{1}}{a} \\
x_{2}=x_{1}+v_{1}\left(\frac{v_{2}-v_{1}}{a}\right)+\frac{1}{2} a\left(\frac{v_{2}-v_{1}}{a}\right)^{2} \\
\quad v_{2}^{2}=v_{1}^{2}+2 a\left(x_{2}-x_{1}\right) \tag{3}
\end{gather*}
$$

Acceleration

Position, Displacement and Distance

The three constant acceleration equations are:

Average Velocity and
 Speed

Instantaneous Velocity
and Speed
Acceleration

$$
\begin{aligned}
v_{2} & =v_{1}+a t_{2} \\
x_{2} & =x_{1}+v_{1} t_{2}+\frac{1}{2} a t_{2}^{2} \\
v_{2}^{2} & =v_{1}^{2}+2 a\left(x_{2}-x_{1}\right)
\end{aligned}
$$

where $t_{1}=0$ so that $\Delta t=t_{2}-t_{1}=t_{2}$.

Acceleration

Position, Displacement and Distance

The three constant acceleration equations are:

Average Velocity and
 Speed

Instantaneous Velocity
and Speed
Acceleration

$$
\begin{aligned}
v(t) & =v_{0}+a t \\
x(t) & =x_{0}+v_{0} t+\frac{1}{2} a t^{2} \\
v^{2} & =v_{0}^{2}+2 a\left(x-x_{0}\right)
\end{aligned}
$$

where $t_{1}=0, t_{2}=t, x_{1}=x_{0}$ and $x_{2}=x$.

Acceleration

Objects near the surface of Earth accelerate toward the Earth with an acceleration of $g=9.8$ $\mathrm{m} / \mathrm{s}^{2}$ (ignoring air resistance).

Position, Displacement and Distance

Average Velocity and Speed

Instantaneous Velocity
and Speed
Acceleration

Acceleration

Lecture Question 3.4

An explorer accidentally drops a wrench over the side of her
hot air balloon as it rises from the ground. The balloon's upward acceleration is $+4 \mathrm{~m} / \mathrm{s}^{2}$ with a a velocity of $+2 \mathrm{~m} / \mathrm{s}$.
Just after the wrench is released,
(a) its acceleration is $-5.4 \mathrm{~m} / \mathrm{s}^{2}$, its velocity is $+2 \mathrm{~m} / \mathrm{s}$.
(b) its acceleration is $-5.4 \mathrm{~m} / \mathrm{s}^{2}$, its velocity is $0 \mathrm{~m} / \mathrm{s}$.
(c) its acceleration is $-9.8 \mathrm{~m} / \mathrm{s}^{2}$, its velocity is $+2 \mathrm{~m} / \mathrm{s}$.
(d) its acceleration is $+5.4 \mathrm{~m} / \mathrm{s}^{2}$, its velocity is $0 \mathrm{~m} / \mathrm{s}$.
(e) its acceleration is $5.4 \mathrm{~m} / \mathrm{s}^{2}$, its velocity is $-2 \mathrm{~m} / \mathrm{s}$.

