Chapter 4 - Motion in 2D and 3D

Generalize to 3D
Projectile Motion
Uniform Circular Motion
Relative Motion
"Never confuse motion with action."

- Benjamin Franklin

David J. Starling
Penn State Hazleton
PHYS 211 and 3D

Generalize to 3D

Position, displacement, velocity and acceleration can be generalized to $3 D$ using vectors.

$$
x(t) \rightarrow \quad \vec{r}(t)=x(t) \hat{i}+y(t) \hat{j}+z(t) \hat{k}
$$

Generalize to 3D

Projectile Motion
Uniform Circular Motion
Relative Motion

Generalize to 3D

Chapter 4 - Motion in 2D and 3D

Position, displacement, velocity and acceleration can be generalized to $3 D$ using vectors.

$$
\begin{aligned}
x(t) & \rightarrow & \vec{r}(t) & =x(t) \hat{i}+y(t) \hat{j}+z(t) \hat{k} \\
\Delta x & & \Delta \vec{r} & =\vec{r}_{2}(t)-\vec{r}_{1}(t)
\end{aligned}
$$

Generalize to 3D

Projectile Motion
Uniform Circular Motion
Relative Motion

Generalize to 3D

Chapter 4 - Motion in 2D and 3D

Position, displacement, velocity and acceleration can be generalized to $3 D$ using vectors.

$$
\begin{aligned}
x(t) & \rightarrow & \vec{r}(t) & =x(t) \hat{i}+y(t) \hat{j}+z(t) \hat{k} \\
\Delta x & \rightarrow & \Delta \vec{r} & =\vec{r}_{2}(t)-\vec{r}_{1}(t) \\
v_{\text {avg }}(t) & \rightarrow & \vec{v}_{\text {avg }}(t) & =\frac{\Delta \vec{r}}{\Delta t}
\end{aligned}
$$

Generalize to 3D
Projectile Motion
Uniform Circular Motion
Relative Motion

Generalize to 3D

Chapter 4 - Motion in 2D and 3D

Position, displacement, velocity and acceleration can be generalized to $3 D$ using vectors.

$$
\begin{aligned}
x(t) & \rightarrow & \vec{r}(t) & =x(t) \hat{i}+y(t) \hat{j}+z(t) \hat{k} \\
\Delta x & \rightarrow & \Delta \vec{r} & =\vec{r}_{2}(t)-\vec{r}_{1}(t) \\
v_{\text {avg }}(t) & \rightarrow & \vec{v}_{\text {avg }}(t) & =\frac{\Delta \vec{r}}{\Delta t} \\
v(t) & & \vec{v}(t) & =\frac{d \vec{r}}{d t}=v_{x}(t) \hat{i}+v_{y}(t) \hat{j}+v_{z}(t) \hat{k}
\end{aligned}
$$

Generalize to 3D
Projectile Motion
Uniform Circular Motion
Relative Motion

Generalize to 3D

Chapter 4 - Motion in 2D and 3D

Position, displacement, velocity and acceleration can be generalized to $3 D$ using vectors.

$$
\begin{aligned}
x(t) & \rightarrow & \vec{r}(t) & =x(t) \hat{i}+y(t) \hat{j}+z(t) \hat{k} \\
\Delta x & \rightarrow & \Delta \vec{r} & =\vec{r}_{2}(t)-\vec{r}_{1}(t) \\
v_{\text {avg }}(t) & \rightarrow & \vec{v}_{\text {avg }}(t) & =\frac{\Delta \vec{r}}{\Delta t} \\
v(t) & & \vec{v}(t) & =\frac{d \vec{r}}{d t}=v_{x}(t) \hat{i}+v_{y}(t) \hat{j}+v_{z}(t) \hat{k} \\
a_{\text {avg }}(t) & \rightarrow & \vec{a}_{\text {avg }}(t) & =\frac{\Delta \vec{v}}{\Delta t}
\end{aligned}
$$

Generalize to 3D

Position, displacement, velocity and acceleration can be generalized to 3D using vectors.

$$
\begin{aligned}
x(t) & \rightarrow & \vec{r}(t) & =x(t) \hat{i}+y(t) \hat{j}+z(t) \hat{k} \\
\Delta x & \rightarrow & \Delta \vec{r} & =\vec{r}_{2}(t)-\vec{r}_{1}(t) \\
v_{\text {avg }}(t) & \rightarrow & \vec{v}_{\text {avg }}(t) & =\frac{\Delta \vec{r}}{\Delta t} \\
v(t) & \rightarrow & \vec{v}(t) & =\frac{d \vec{r}}{d t}=v_{x}(t) \hat{i}+v_{y}(t) \hat{j}+v_{z}(t) \hat{k} \\
a_{\text {avg }}(t) & \rightarrow & \vec{a}_{\text {avg }}(t) & =\frac{\Delta \vec{v}}{\Delta t} \\
a(t) & \rightarrow & \vec{a}(t) & =\frac{d \vec{v}}{d t}=a_{x}(t) \hat{i}+a_{y}(t) \hat{j}+a_{z}(t) \hat{k}
\end{aligned}
$$

Generalize to 3D

We can also generalize two of our constant acceleration equations.

Generalize to 3D

Projectile Motion
Uniform Circular Motion
Relative Motion

$$
\begin{array}{ll}
v(t)=v_{0}+a t & \rightarrow \vec{v}(t)=\vec{v}_{0}+\vec{a} t \\
x(t)=x_{0}+v_{0} t+\frac{1}{2} a t^{2} & \rightarrow \vec{r}(t)=\vec{r}_{0}+\vec{v}_{0} t+\frac{1}{2} \vec{a} t^{2}
\end{array}
$$

Generalize to 3D

We can also generalize two of our constant acceleration equations.

$$
\begin{array}{ll}
v(t)=v_{0}+a t & \rightarrow \vec{v}(t)=\vec{v}_{0}+\vec{a} t \\
x(t)=x_{0}+v_{0} t+\frac{1}{2} a t^{2} & \rightarrow \vec{r}(t)=\vec{r}_{0}+\vec{v}_{0} t+\frac{1}{2} \vec{a} t^{2} \\
& \rightarrow v_{x}^{2}=v_{0, x}^{2}+2 a_{x} \Delta x \\
& \rightarrow v_{y}^{2}=v_{0, y}^{2}+2 a_{y} \Delta y \\
& \rightarrow v_{z}^{2}=v_{0, z}^{2}+2 a_{z} \Delta z
\end{array}
$$

Objectives (Ch 4)

Lecture Question 4.1

When an object is thrown (ignoring air drag), after it has left the thrower's hand,
(a) v_{x} and v_{y} are constant.
(b) v_{x} and v_{y} change with time.
(c) v_{x} changes with time but v_{y} is constant.
(d) v_{x} is constant but v_{y} changes with time.

Projectile Motion

Projectile motion is a very common example of $2 D$ motion where objects move under the influence of gravity.

Projectile Motion

Projectile motion is a very common example of $2 D$ motion where objects move under the influence of gravity.

This ball is also rotating - we'll get to that later (Ch 10).

Projectile Motion

Chapter 4 - Motion in 2D and 3D

In projectile motion, the acceleration in the horizontal direction is $0 \mathrm{~m} / \mathrm{s}^{2}$.

Generalize to 3D
Projectile Motion
Uniform Circular Motion
Relative Motion

Projectile Motion

Chapter 4 - Motion in 2D and 3D

In projectile motion, the acceleration in the horizontal direction is $0 \mathrm{~m} / \mathrm{s}^{2}$.

Generalize to 3D
Projectile Motion
Uniform Circular Motion
Relative Motion

If we pick $+x$ as right, $a_{x}=0 \mathrm{~m} / \mathrm{s}^{2}$.

Projectile Motion

Chapter 4 - Motion in 2D and 3D

In projectile motion, the acceleration in the vertical direction is $g=9.81 \mathrm{~m} / \mathrm{s}^{2}$.

Generalize to 3D
Projectile Motion
Uniform Circular Motion
Relative Motion

Projectile Motion

Chapter 4 - Motion in 2D and 3D

In projectile motion, the acceleration in the vertical direction is $g=9.81 \mathrm{~m} / \mathrm{s}^{2}$.

Generalize to 3D
Projectile Motion
Uniform Circular Motion
Relative Motion

If we pick $+y$ as up, $a_{y}=-9.8 \mathrm{~m} / \mathrm{s}^{2}$.

Projectile Motion

In projectile motion, the horizontal and vertical motion are independent of each other.

Generalize to 3D
Projectile Motion
Uniform Circular Motion
Relative Motion

Projectile Motion

In projectile motion, the horizontal and vertical motion are independent of each other.

Generalize to 3D

Projectile Motion
Uniform Circular Motion
Relative Motion

We use our standard equations:

$$
\begin{aligned}
& x(t)=x_{0}+v_{0, x} t+\frac{1}{2} a_{x} t^{2} \\
& y(t)=y_{0}+v_{0, y} t+\frac{1}{2} a_{y} t^{2}
\end{aligned}
$$

Projectile Motion

Lecture Question 4.2

A bullet is aimed at a target on the wall a distance L away from the firing position and the bullet strikes the wall a distance Δy below the mark. If the distance L was half as large, and the bullet had the same initial velocity, how would Δy change?

(a) $\Delta y \rightarrow 2 \Delta y$
(b) $\Delta y \rightarrow 4 \Delta y$
(c) $\Delta y \rightarrow \Delta y / 2$
(d) $\Delta y \rightarrow \Delta y / 4$
(e) Need more information.

Uniform Circular Motion

An object is in uniform circular motion when its speed is constant and it travels in a circle.

Generalize to 3D

Projectile Motion
Uniform Circular Motion
Relative Motion

Uniform Circular Motion

An object moving in a circle experiences acceleration (even if it's moving at constant speed!).

Chapter 4 - Motion in 2D and 3D

Generalize to 3D

Projectile Motion
Uniform Circular Motion
Relative Motion

Uniform Circular Motion

An object moving in a circle experiences acceleration (even if it's moving at constant speed!).

Generalize to 3D

Projectile Motion
Uniform Circular Motion
Relative Motion

Uniform Circular Motion

An object moving in a circle experiences acceleration (even if it's moving at constant speed!).

Uniform Circular Motion

For uniform circular motion, we can find the centripetal acceleration a_{r} using geometry and calculus.

Chapter 4 - Motion in 2D and 3D

Generalize to 3D
Projectile Motion
Uniform Circular Motion
Relative Motion

Uniform Circular Motion

For uniform circular motion, we can find the centripetal acceleration a_{r} using geometry and calculus.

Generalize to 3D

Projectile Motion
Uniform Circular Motion
Relative Motion

Uniform Circular Motion

For uniform circular motion, we can find the centripetal acceleration a_{r} using geometry and calculus.

$$
\vec{v}=v_{x} \hat{i}+v_{y} \hat{j}
$$

Generalize to 3D
Projectile Motion
Uniform Circular Motion
Relative Motion

Uniform Circular Motion

For uniform circular motion, we can find the centripetal acceleration a_{r} using geometry and calculus.

$$
\begin{aligned}
\vec{v} & =v_{x} \hat{i}+v_{y} \hat{j} \\
& =[-v \sin (\theta)] \hat{i}+[v \cos (\theta)] \hat{j}
\end{aligned}
$$

Generalize to 3D
Projectile Motion
Uniform Circular Motion
Relative Motion

Uniform Circular Motion

For uniform circular motion, we can find the centripetal acceleration a_{r} using geometry and calculus.

Generalize to 3D

Projectile Motion
Uniform Circular Motion
Relative Motion

Uniform Circular Motion

For uniform circular motion, we can find the centripetal acceleration a_{r} using geometry and calculus.

Generalize to 3D
Projectile Motion
Uniform Circular Motion
Relative Motion

$$
\begin{aligned}
\vec{v} & =v_{x} \hat{i}+v_{y} \hat{j} \\
& =[-v \sin (\theta)] \hat{i}+[v \cos (\theta)] \hat{j} \\
& =\left(-\frac{v y}{r}\right) \hat{i}+\left(\frac{v x}{r}\right) \hat{j} \\
\vec{a} & =\frac{d \vec{v}}{d t}
\end{aligned}
$$

Uniform Circular Motion

Chapter 4 - Motion in 2D and 3D

Generalize to 3D
Projectile Motion
Uniform Circular Motion
Relative Motion

Uniform Circular Motion

Chapter 4 - Motion in 2D and 3D

Generalize to 3D
Projectile Motion
Uniform Circular Motion
Relative Motion

Uniform Circular Motion

Chapter 4 - Motion in 2D
Chapter 4 - Motio
and 3D

Generalize to 3D
Projectile Motion
Uniform Circular Motion
Relative Motion

$$
\begin{aligned}
\vec{v} & =\frac{v}{r}(-y \hat{i}+x \hat{j}) \\
\vec{a} & =\frac{d \vec{v}}{d t}=\frac{v}{r}\left(-v_{y} \hat{i}+v_{x} \hat{j}\right) \\
a & =\sqrt{a_{x}^{2}+a_{y}^{2}}
\end{aligned}
$$

Uniform Circular Motion

Chapter 4 - Motion in 2D and 3D

Generalize to 3D
Projectile Motion
Uniform Circular Motion
Relative Motion

$$
\begin{aligned}
\vec{v} & =\frac{v}{r}(-y \hat{i}+x \hat{j}) \\
\vec{a} & =\frac{d \vec{v}}{d t}=\frac{v}{r}\left(-v_{y} \hat{i}+v_{x} \hat{j}\right) \\
a & =\sqrt{a_{x}^{2}+a_{y}^{2}} \\
& =\frac{v}{r} \sqrt{v_{y}^{2}+v_{x}^{2}}
\end{aligned}
$$

Uniform Circular Motion

Chapter 4 - Motion in 2D and 3D

Generalize to 3D
Projectile Motion
Uniform Circular Motion
Relative Motion

$$
\begin{aligned}
\vec{v} & =\frac{v}{r}(-y \hat{i}+x \hat{j}) \\
\vec{a} & =\frac{d \vec{v}}{d t}=\frac{v}{r}\left(-v_{y} \hat{i}+v_{x} \hat{j}\right) \\
a & =\sqrt{a_{x}^{2}+a_{y}^{2}} \\
& =\frac{v}{r} \sqrt{v_{y}^{2}+v_{x}^{2}} \\
a & =\frac{v^{2}}{r} \text { (uniform circular motion) }
\end{aligned}
$$

Uniform Circular Motion

Lecture Question 4.3

A steel ball is whirled on the end of a chain in a horizontal

Projectile Motion
Uniform Circular Motion
Relative Motion
(a) Centripetal acceleration increases.
(b) Centripetal acceleration decrease.
(c) Centripetal acceleration stays the same.
(d) Not enough information.

Relative Motion

The velocity of an object depends on the reference frame from which it is measured.

Relative Motion

The velocity of an object depends on the reference frame from which it is measured.

- frame A (Alice) is stationary
- frame B (Bob) moves with some constant velocity
- object P (Parakeet) is measured

Relative Motion

- $x_{B A}$: position of Bob relative to Alice
- $x_{P B}$: position of Parakeet relative to Bob
- $x_{P A}$: position of Parakeet relative to Alice

Relative Motion

- $x_{B A}$: position of Bob relative to Alice
- $x_{P B}$: position of Parakeet relative to Bob
- $x_{P A}$: position of Parakeet relative to Alice

$$
x_{P A}=x_{P B}+x_{B A}
$$

Generalize to 3D
Projectile Motion
Uniform Circular Motion
Relative Motion

Relative Motion

- $x_{B A}$: position of Bob relative to Alice
- $x_{P B}$: position of Parakeet relative to Bob
- $x_{P A}$: position of Parakeet relative to Alice

$$
\begin{aligned}
x_{P A} & =x_{P B}+x_{B A} \\
v_{P A} & =v_{P B}+v_{B A}
\end{aligned}
$$

Generalize to 3D
Projectile Motion
Uniform Circular Motion
Relative Motion

Relative Motion

Generalize to 3D

Projectile Motion
Uniform Circular Motion
Relative Motion

- $x_{B A}$: position of Bob relative to Alice
- $x_{P B}$: position of Parakeet relative to Bob
- $x_{P A}$: position of Parakeet relative to Alice

$$
\begin{aligned}
x_{P A} & =x_{P B}+x_{B A} \\
v_{P A} & =v_{P B}+v_{B A} \\
a_{P A} & =a_{P B}+a_{B A}
\end{aligned}
$$

Relative Motion

Generalize to 3D
Projectile Motion
Uniform Circular Motion
Relative Motion

- $\vec{r}_{B A}$: position of Bob relative to Alice
- $\vec{r}_{P B}$: position of Parakeet relative to Bob
- $\vec{r}_{P A}$: position of Parakeet relative to Alice

Relative Motion

Generalize to 3D
Projectile Motion
Uniform Circular Motion
Relative Motion

- $\vec{r}_{B A}$: position of Bob relative to Alice
- $\vec{r}_{P B}$: position of Parakeet relative to Bob
- $\vec{r}_{P A}$: position of Parakeet relative to Alice

$$
\vec{r}_{P A}=\vec{r}_{P B}+\vec{r}_{B A}
$$

Relative Motion

Generalize to 3D
Projectile Motion
Uniform Circular Motion
Relative Motion

- $\vec{r}_{B A}$: position of Bob relative to Alice
- $\vec{r}_{P B}$: position of Parakeet relative to Bob
- $\vec{r}_{P A}$: position of Parakeet relative to Alice

$$
\begin{aligned}
\vec{r}_{P A} & =\vec{r}_{P B}+\vec{r}_{B A} \\
\vec{v}_{P A} & =\vec{v}_{P B}+\vec{v}_{B A}
\end{aligned}
$$

Relative Motion

Generalize to 3D
Projectile Motion
Uniform Circular Motion
Relative Motion

- $\vec{r}_{B A}$: position of Bob relative to Alice
- $\vec{r}_{P B}$: position of Parakeet relative to Bob
- $\vec{r}_{P A}$: position of Parakeet relative to Alice

$$
\begin{aligned}
\vec{r}_{P A} & =\vec{r}_{P B}+\vec{r}_{B A} \\
\vec{v}_{P A} & =\vec{v}_{P B}+\vec{v}_{B A} \\
\vec{a}_{P A} & =\vec{a}_{P B}+\vec{a}_{B A}
\end{aligned}
$$

