## Chapter 5 - Force and Motion


"I know not what I appear to the world, but to myself I seem to have been only like a boy playing on the sea-shore, and diverting myself in now and then finding a smoother pebble or a prettier shell, whilst the great ocean of truth lay all undiscovered before me."

- Sir Isaac Newton

1643-1727
(84 years old!)

## David J. Starling <br> Penn State Hazleton PHYS 211

## Introduction

- We know that the position of a body can be described by the following equation:
- $\mathbf{r}(t)=\mathbf{r}_{0}+\mathbf{v}_{0} t+\frac{1}{2} \mathbf{a} t^{2}$


## Introduction

- We know that the position of a body can be described by the following equation:
- $\mathbf{r}(t)=\mathbf{r}_{0}+\mathbf{v}_{0} t+\frac{1}{2} \mathbf{a} t^{2}$
- $\mathbf{a}(t)=\frac{d}{d t} \mathbf{v}(t)=\frac{d}{d t}\left[\frac{d}{d t} \mathbf{r}(t)\right]$


## Introduction

- We know that the position of a body can be described by the following equation:
- $\mathbf{r}(t)=\mathbf{r}_{0}+\mathbf{v}_{0} t+\frac{1}{2} \mathbf{a} t^{2}$
- $\mathbf{a}(t)=\frac{d}{d t} \mathbf{v}(t)=\frac{d}{d t}\left[\frac{d}{d t} \mathbf{r}(t)\right]$



## Introduction

- We know that the position of a body can be described by the following equation:
- $\mathbf{r}(t)=\mathbf{r}_{0}+\mathbf{v}_{0} t+\frac{1}{2} \mathbf{a} t^{2}$
- $\mathbf{a}(t)=\frac{d}{d t} \mathbf{v}(t)=\frac{d}{d t}\left[\frac{d}{d t} \mathbf{r}(t)\right]$

- Today, we will learn how this motion is created.


## Introduction

- We know that the position of a body can be described by the following equation:
- $\mathbf{r}(t)=\mathbf{r}_{0}+\mathbf{v}_{0} t+\frac{1}{2} \mathbf{a} t^{2}$
- $\mathbf{a}(t)=\frac{d}{d t} \mathbf{v}(t)=\frac{d}{d t}\left[\frac{d}{d t} \mathbf{r}(t)\right]$

- Today, we will learn how this motion is created.
- This is called dynamics


## Introduction

- We know that the position of a body can be described by the following equation:
- $\mathbf{r}(t)=\mathbf{r}_{0}+\mathbf{v}_{0} t+\frac{1}{2} \mathbf{a} t^{2}$
- $\mathbf{a}(t)=\frac{d}{d t} \mathbf{v}(t)=\frac{d}{d t}\left[\frac{d}{d t} \mathbf{r}(t)\right]$

- Today, we will learn how this motion is created.
- This is called dynamics
- Dynamics are described by Newton's Laws


## Introduction

## Introduction

Chapter 5 - Force and Motion

$\approx 2000$ years ago

Newton's First Law
Newton's Second Law
Newton's Third Law

## Introduction

Newton's First Law
Newton's Second Law
Newton's Third Law

$\approx 4,400$ years ago

$\approx 2000$ years ago


## Introduction

Sir Isaac Newton's scientific contributions

- Mathematics
- Kinematics
- Dynamics
- Gravitation
- Optics



## Newton's First Law

## Consider the following diagram:

## Newton's First Law

Newton's Second Law
Newton's Third Law

## Newton's First Law

Consider the following diagram:


If the string suddenly snaps when the puck is in the position shown, which path best represents the puck's subsequent motion?

## Newton's First Law

## Interesting Example

## Newton's First Law

Newton's Second Law
Newton's Third Law


## Newton's First Law

## Newton's First Law

When the net force on an object is zero, it moves with constant velocity. (The Law of Inertia)

## Newton's First Law

Newton's First Law

When the net force on an object is zero, it moves with constant velocity.
(The Law of Inertia)

Examples:

- A puck or hockey player on ice
- A paper weight on your desk
- What else?


## Newton's First Law

But what is a force?
Newton's First Law
Newton's Second Law
Newton's Third Law

## Newton's First Law

But what is a force?

Types of forces:

- Tension
- Contact
- Friction
- Force at a distance
- Normal



## Newton's First Law

What is "net force?"

$$
\sum_{i} \vec{F}_{i}=\vec{F}_{1}+\vec{F}_{2}+\vec{F}_{3}+\ldots=\vec{F}_{n e t}
$$

## Newton's First Law

What is "net force?"

$$
\sum_{i} \vec{F}_{i}=\vec{F}_{1}+\vec{F}_{2}+\vec{F}_{3}+\ldots=\vec{F}_{n e t}
$$

How can net force be zero?

- $\sum_{i} \vec{F}_{i}=\overrightarrow{0}=0 \hat{i}+0 \hat{j}+0 \hat{k}$


## Newton's First Law

What is "net force?"

$$
\sum_{i} \vec{F}_{i}=\vec{F}_{1}+\vec{F}_{2}+\vec{F}_{3}+\ldots=\vec{F}_{n e t}
$$

How can net force be zero?

- $\sum_{i} \vec{F}_{i}=\overrightarrow{0}=0 \hat{i}+0 \hat{j}+0 \hat{k}$
- An object with no applied forces



## Newton's First Law

What is "net force?"

$$
\sum_{i} \vec{F}_{i}=\vec{F}_{1}+\vec{F}_{2}+\vec{F}_{3}+\ldots=\vec{F}_{n e t}
$$

How can net force be zero?

$$
\sum_{i} \vec{F}_{i}=\overrightarrow{0}=0 \hat{i}+0 \hat{j}+0 \hat{k}
$$

- An object with no applied forces
- An object with balancing forces



## Newton's First Law

The converse is also true:

When an object moves with constant velocity, the net force is zero.

## Newton's First Law

The converse is also true:

When an object moves with constant velocity, the net force is zero.

Constant velocity? $\rightarrow \frac{d}{d t} \vec{v}=\vec{a}=\overrightarrow{0}$

## Newton's First Law

The converse is also true:

> When an object moves with constant velocity, the net force is zero.

Constant velocity? $\rightarrow \frac{d}{d t} \vec{v}=\vec{a}=\overrightarrow{0}$

$$
\mathbf{v}(t)=v_{x}(t) \hat{i}+v_{y}(t) \hat{j}+v_{z}(t) \hat{k}
$$

## Newton's First Law

The converse is also true:

## When an object moves with constant velocity, the net force is zero.

Constant velocity? $\rightarrow \frac{d}{d t} \vec{v}=\vec{a}=\overrightarrow{0}$

$$
\begin{aligned}
\mathbf{v}(t) & =v_{x}(t) \hat{i}+v_{y}(t) \hat{j}+v_{z}(t) \hat{k} \\
\frac{d}{d t} \mathbf{v} & =\left(\frac{d}{d t} v_{x}(t)\right) \hat{i}+\left(\frac{d}{d t} v_{y}(t)\right) \hat{j}+\left(\frac{d}{d t} v_{z}(t)\right) \hat{k}=\overrightarrow{0}
\end{aligned}
$$

## Newton's First Law

The converse is also true:
Newton's First Law
Newton's Second Law
Newton's Third Law

## When an object moves with constant velocity, the net force is zero.

Constant velocity? $\rightarrow \frac{d}{d t} \vec{v}=\vec{a}=\overrightarrow{0}$

$$
\begin{aligned}
\mathbf{v}(t) & =v_{x}(t) \hat{i}+v_{y}(t) \hat{j}+v_{z}(t) \hat{k} \\
\frac{d}{d t} \mathbf{v} & =\left(\frac{d}{d t} v_{x}(t)\right) \hat{i}+\left(\frac{d}{d t} v_{y}(t)\right) \hat{j}+\left(\frac{d}{d t} v_{z}(t)\right) \hat{k}=\overrightarrow{0} \\
\frac{d}{d t} v_{x}(t) & =\frac{d}{d t} v_{y}(t)=\frac{d}{d t} v_{z}(t)=0
\end{aligned}
$$

## Newton's First Law

There are two ways to make $\vec{v}$ change in time $\left(\frac{d}{d t} \vec{v} \neq \overrightarrow{0}\right)$ :

## Newton's First Law

There are two ways to make $\vec{v}$ change in time $\left(\frac{d}{d t} \vec{v} \neq \overrightarrow{0}\right)$ :

- Change the magnitude of $\vec{v}(|\vec{v}|=v)$



## Newton's First Law

There are two ways to make $\vec{v}$ change in time $\left(\frac{d}{d t} \vec{v} \neq \overrightarrow{0}\right)$ :

- Change the magnitude of $\vec{v}(|\vec{v}|=v)$

- Change the direction of $\vec{v}$


Newton's First Law
Newton's Second Law
Newton's Third Law

## Lecture Question 5.1

When you drive your car down a straight highway at a constant velocity, the net force on your car is zero.
(a) True
(b) False, because of air drag.
(c) False, because of friction from the road.
(d) False because of air drag and friction from the road.

## Newton's Second Law

## Newton's Second Law

An object acted upon by a net force accelerates according to

$$
\vec{F}_{n e t}=m \vec{a} .
$$

## Newton's Second Law

The S.I. unit for force can be found from the equation:

- $F=m a \rightarrow \mathrm{~kg}-\mathrm{m} / \mathrm{s}^{2}$


## Newton's Second Law

The S.I. unit for force can be found from the equation:

- $F=m a \rightarrow \mathrm{~kg}-\mathrm{m} / \mathrm{s}^{2}$
- This combination is called a Newton (N)


## Newton's Second Law

The S.I. unit for force can be found from the equation:

- $F=m a \rightarrow \mathrm{~kg}-\mathrm{m} / \mathrm{s}^{2}$
- This combination is called a Newton (N)
- Force is in newtons $(\mathrm{N})$ [4.45 $\mathrm{N} \approx 1 \mathrm{lb}]$


## Newton's Second Law

The S.I. unit for force can be found from the equation:

- $F=m a \rightarrow \mathrm{~kg}-\mathrm{m} / \mathrm{s}^{2}$
- This combination is called a Newton (N)
- Force is in newtons ( N ) [4.45 $\mathrm{N} \approx 1 \mathrm{lb}]$

$$
F=100 \mathrm{lb}=100 \mathrm{lb} \times 4.45 \frac{\mathrm{~N}}{\mathrm{lb}}=445 \mathrm{~N} .
$$

## Newton's Second Law

## Lecture Question 5.2

A car of mass $m$ is moving at a speed $3 v$ in the left lane on a highway. In the right lane, a truck of mass $3 m$ is moving at a speed $v$. As the car is passing the truck, both drivers apply the brakes to stop ahead at a red light. What is the ratio of the force required to stop the truck to that required to stop the car? Assume each vehicle stops with a constant deceleration and stops in the same distance $x$.
(a) $1 / 9$
(b) $1 / 3$
(c) 1
(d) 3
(e) 9

## Newton's Third Law

Newton's Third Law

The mutual forces between two bodies are equal and opposite.


## Newton's Third Law

Newton's Third Law

The mutual forces between two bodies are equal and opposite.


Other examples:

- Tug of war!
- Opening a door
- Jumping on a trampoline


## Newton's Third Law

Example: An astronaut ( $m_{a}=80 \mathrm{~kg}$ ) is tethered to a satellite ( $m_{s}=800 \mathrm{~kg}$ ) in a remote region of space. The astronaut pulls on the tether with 40 N of force. What happens?


## Newton's Third Law

First, let's simplify this picture:


## Newton's Third Law

## What are the forces on each object?



## Newton's Third Law



Newton's First Law<br>Newton's Second Law<br>Newton's Third Law

## Newton's Third Law



The Satellite:

- $\vec{F}_{n e t}=40 \hat{i}=m_{s} \vec{a}_{s}=800 \vec{a}_{s}$


## Newton's Third Law



Newton's First Law
Newton's Second Law
Newton's Third Law

## The Satellite:

- $\vec{F}_{n e t}=40 \hat{i}=m_{s} \vec{a}_{s}=800 \vec{a}_{s}$
- Therefore, $\vec{a}_{s}=\frac{40 \hat{i}}{800}=0.05 \hat{i} \mathrm{~m} / \mathrm{s}^{2}$


## Newton's Third Law



## The Satellite:

- $\vec{F}_{n e t}=40 \hat{i}=m_{s} \vec{a}_{s}=800 \vec{a}_{s}$
- Therefore, $\vec{a}_{s}=\frac{40 \hat{i}}{800}=0.05 \hat{i} \mathrm{~m} / \mathrm{s}^{2}$

The astronaut:

- $\vec{F}_{\text {net }}=-40 \hat{i}=m_{a} \vec{a}_{a}=80 \vec{a}_{a}$


## Newton's Third Law

The Satellite:

- $\vec{F}_{n e t}=40 \hat{i}=m_{s} \vec{a}_{s}=800 \vec{a}_{s}$
- Therefore, $\vec{a}_{s}=\frac{40 \hat{i}}{800}=0.05 \hat{i} \mathrm{~m} / \mathrm{s}^{2}$

The astronaut:

- $\vec{F}_{n e t}=-40 \hat{i}=m_{a} \vec{a}_{a}=80 \vec{a}_{a}$
- Therefore, $\vec{a}_{a}=\frac{-40 \hat{i}}{80}=-0.5 \hat{i} \mathrm{~m} / \mathrm{s}^{2}$


## Newton's Three Laws:

Newton's Three Laws:

- 1: When the net force on an object is zero, it moves with constant velocity.

Newton's Three Laws:

- 1: When the net force on an object is zero, it moves with constant velocity.
- 2: An object acted upon by a net force accelerates according to $\vec{F}_{n e t}=m \vec{a}$.


## Newton's Three Laws:

- 1: When the net force on an object is zero, it moves with constant velocity.
- 2: An object acted upon by a net force accelerates according to $\vec{F}_{n e t}=m \vec{a}$.
- 3: The mutual forces between two bodies are equal and opposite.


## Problem Solving Techniques

Newton's Second Law
Newton's Third Law

- Step 1: Identify object(s) and sketch

Problem Solving Techniques
Newton's First Law

Newton's Second Law
Newton's Third Law

- Step 1: Identify object(s) and sketch
- Step 2: Draw each force on object(s)

Problem Solving Techniques
Newton's First Law

Newton's Second Law
Newton's Third Law

- Step 1: Identify object(s) and sketch
- Step 2: Draw each force on object(s)
- Step 3: Draw a set of axes and separate forces into components along them

Problem Solving Techniques

Newton's Second Law
Newton's Third Law

- Step 1: Identify object(s) and sketch
- Step 2: Draw each force on object(s)
- Step 3: Draw a set of axes and separate forces into components along them
- Step 4: Sum the forces (head to tail)
- Step 5: Set equal to $m \vec{a}$ and solve


## Lecture Question 5.3

When a satellite travels around the Earth in a circular orbit, it moves at a (roughly) constant speed. Does Newton's first law apply in this situation?
(a) Yes
(b) No, because the satellite's position is changing
(c) No, because the satellite is also pulled by the sun
(d) No, because the satellite changes direction
(e) No, because the satellite's orbit eventually decays

