3/11/2013

Practice Exam #2

Do not flip the page until told to do so.

Name: _____

Problem	Grade	Points Possible
1		5
2		5
3		5
4		15
5		15
6		15
Total		60

Useful Equations

	$ec{F_q} = rac{1}{4\pi\epsilon_0} rac{q_1q_2}{r^2} \hat{r}$
$x(t) = x_0 + v_{0x}t + \frac{1}{2}a_xt^2$	$ec{E}_q = rac{1}{4\pi\epsilon_0} rac{q}{r^2} \hat{r}$
$v_x(t) = v_{0x} + a_x t$	$ec{F_q} = qec{E}$
$v_{fx}^2 = v_{0x}^2 + 2a_x \Delta x$	$ec{p}=qec{d}$
$a_c = \frac{v^2}{2}$	$ec{ au_p}=ec{p} imesec{E}$
r	$U_p = -ec{p}\cdotec{E}$
$\sum_{i} F_i = m\vec{a} = \frac{ap}{dt}$	$E_p(z) = \frac{1}{2\pi\epsilon_0} \frac{p}{z^3}$
$\vec{p} = m\vec{v}$	$\Phi = q_{enc}/\epsilon_0$
	$\Phi=\ointec{E}\cdotec{dA}$

Question 1: Three positive charges are spaced evenly in an equilateral triangle. Two of the charges have charge q, and the third has charge 2q. Draw solid \vec{E} -field lines and dashed equipotential lines for this configuration.

Question 2: The capacitance of an ideal capacitor can depend on the following quantities (circle all that apply):

- (a) The size of the conducting plates.
- (b) The power dissipated by the capacitor.
- (c) The distance between the conducting plates.
- (d) The potential applied to the conducting plates.
- (e) None of the above.

Question 3: Current is passed through two lightbulbs using a 9 V battery. Rank the following three circumstances in terms of the brightness of the bulbs, with 1 being the brightest. Two configurations may yield the same results.

- ____ Each bulb by itself.
- ____ The two bulbs in series.
- ____ The two bulbs in parallel.

Question 4: A sphere of radius R = 1 m and surface charge density $\sigma_S = 10 \text{ C/m}^2$ is placed a distance d = 2 m from an infinitely large plate of charge density $\sigma_P = 3 \text{ C/m}^2$, as shown below. Find the potential between the two closest points on the sphere and plate:

Question 5: Two conducting objects (1 and 2) of arbitrary shape hold charges of $\pm q$. At this charge, the electric field in the region is given by $\vec{E} = -A[y^2\hat{i} + (2xy + z^2)\hat{j} + 2yz\hat{k}]$ V/m (with A a constant and ignoring the field inside each conductor). Find the capacitance of this makeshift capacitor by considering the two closest points on the objects, $\vec{r_1} = (0, 1, 0)$ m and $\vec{r_2} = (1, 1, 0)$ m.

Question 6: Find the current through each branch of the circuit below, when V = 9 V.

