## Practice Exam \#3

Do not flip the page until told to do so.
Name:

| Problem | Grade | Points Possible |
| :---: | :---: | :---: |
| 1 |  | 5 |
| 2 |  | 5 |
| 3 |  | 5 |
| 4 |  | 15 |
| 5 |  | 15 |
| 6 |  | 15 |
| Total |  | 60 |

$$
\begin{aligned}
& x(t)=x_{0}+v_{0 x} t+\frac{1}{2} a_{x} t^{2} \\
& \vec{F}_{q}=\frac{1}{4 \pi \epsilon_{0}} \frac{q_{1} q_{2}}{r^{2}} \hat{r} \\
& v_{x}(t)=v_{0 x}+a_{x} t \\
& v_{f x}^{2}=v_{0 x}^{2}+2 a_{x} \Delta x \\
& a_{c}=\frac{v^{2}}{r} \\
& \sum_{i} \vec{F}_{i}=m \vec{a}=\frac{d \vec{p}}{d t} \\
& \vec{p}=m \vec{v} \\
& \epsilon_{0}=8.85 \times 10^{-12} \\
& \vec{E}_{q}=\frac{1}{4 \pi \epsilon_{0}} \frac{q}{r^{2}} \hat{r} \\
& \vec{F}_{q}=q \vec{E} \\
& \vec{p}=q \vec{d} \\
& \vec{\tau}_{p}=\vec{p} \times \vec{E} \\
& U_{p}=-\vec{p} \cdot \vec{E} \\
& E_{p}(z)=\frac{1}{2 \pi \epsilon_{0}} \frac{p}{z^{3}} \\
& \Phi_{E}=q_{\text {enc }} / \epsilon_{0} \\
& \Phi_{E}=\oint \vec{E} \cdot \overrightarrow{d A} \\
& V_{b}-V_{a}=-\int_{a}^{b} \vec{E} \cdot \overrightarrow{d s} \\
& \Phi_{B}=\oint \vec{B} \cdot \overrightarrow{d A} \\
& V=\frac{1}{4 \pi \epsilon_{0}} \frac{q}{r} \\
& \vec{E}=-\frac{\partial V}{\partial x} \hat{i}-\frac{\partial V}{\partial y} \hat{j}-\frac{\partial V}{\partial z} \hat{k} \\
& i=\frac{d q}{d t} \\
& \vec{F}_{B}=q \vec{v} \times \vec{B} \\
& i=\int J d A \\
& V=i R \\
& V=q / C \text { or } C=q / V \\
& \tau_{C}=R C \\
& \tau_{L}=L / R \\
& C=\frac{\epsilon_{0} A}{d} \\
& C_{e q}=C_{1}+C_{2}+\ldots \\
& U_{E}=\frac{q^{2}}{2 C}=\frac{1}{2} C V^{2} \\
& U_{B}-\frac{1}{2} L i^{2} \\
& \frac{1}{C_{e q}}=\frac{1}{C_{1}}+\frac{1}{C_{2}}+\ldots \\
& \oint \vec{B} \cdot d \vec{s}=\mu_{0} i_{e n c} \\
& B=\frac{\mu_{0} i}{2 \pi R} \\
& B=\frac{\mu_{0} i \phi}{4 \pi R} \\
& B=\mu_{0} n i \\
& B=\frac{\mu_{0} N i}{2 \pi} \frac{1}{r} \\
& B(z)=\frac{\mu_{0} i R^{2}}{2\left(R^{2}+z^{2}\right)^{3 / 2}} \\
& \vec{B}(z)=\frac{\mu_{0}}{2 \pi} \frac{\vec{\mu}}{z^{3}} \\
& n=N / L \\
& F_{B}=q v B \sin (\theta) \\
& \vec{F}_{B}=i \vec{L} \times \vec{B} \\
& \vec{\tau}=\vec{\mu} \times \vec{B} \\
& \mathcal{E}=-\frac{d \Phi_{B}}{d t} \\
& L=\frac{N \Phi_{B}}{i} \\
& \mathcal{E}=-L \frac{d i}{d t} \\
& \vec{\mu}=N i \vec{A} \\
& \mathcal{E}_{\{1,2\}}=-M \frac{d i_{\{2,1\}}}{d t} \\
& q(t)=Q \cos (\omega t+\phi) \\
& v=E / B \\
& q(t)=Q e^{-t / 2 \tau_{L}} \cos \left(\omega^{\prime} t+\phi\right) \\
& \omega=\sqrt{1 / L C} \\
& \tan (\phi)=\frac{X_{L}-X_{C}}{R} \\
& R_{e q}=R_{1}+R_{2}+\ldots \\
& \omega^{\prime}=\sqrt{\omega^{2}-(R / 2 L)^{2}} \\
& I=\mathcal{E}_{m} / Z \\
& R_{e q}=R_{1}+R_{2}+\ldots \\
& Z=\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}} \\
& \frac{1}{R_{e q}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\ldots \\
& X_{L}=\omega_{d} L \\
& X_{C}=1 / \omega_{d} C
\end{aligned}
$$

Question 1: Power $P$ is transmitted along a cable at a voltage of 1 kV and a current of 500 A . Some of this power is lost during transmission in the resistance $R$ of the wires. If the same power $P$ is transmitted at only 120 V through the same wires, how much more/less power is lost during transmission? Answer in terms of a ratio $\left(P_{120} / R_{1000}\right)$.

Question 2: Current is passed through two lightbulbs using a 9 V battery. Rank the following three circumstances in terms of the brightness of the bulbs, with 1 being the brightest. Two configurations may yield the same results.

- __ Each bulb by itself.
- ___ The two bulbs in series.
- __ The two bulbs in parallel.

Question 3: A charged particle moves at a very high speed to the right in a magnetic field that points upward. Describe its motion if the particle is
(a) positively charged;
(b) negatively charged;
(c) neutral.

Question 4: A 100-m long copper wire has a diameter of 1 mm .
(a) Compute its resistance (look up appropriate constants).
(b) If a current of 1 A passes through the wire for 2 hours, how much energy has been converted to heat?
(c) If the price of electricity is 8 cents $/ \mathrm{kW}-\mathrm{hr}$, how much money has been lost to heat?
(d) Repeat parts (a) - (c) for a wire of twice the diameter.

Question 5: Find the current through each branch of the circuit below, when $V=9 \mathrm{~V}$.


Question 6: An electron moves in a uniform magnetic field $\vec{B}$ with a velocity $\vec{v}=2000 \hat{j} \mathrm{~m} / \mathrm{s}$. Find the magnetic force on the particle if
(a) $\vec{B}=4 \hat{k} \mathrm{~T}$
(b) $\vec{B}=-4 \hat{k} \mathrm{~T}$
(c) $\vec{B}=4 \hat{i} \mathrm{~T}$
(d) $\vec{B}=4 \hat{j} \mathrm{~T}$

