Practice Exam #4

Do not flip the page until told to do so.

Name: _____

Problem	Grade	Points Possible
1		5
2		5
3		5
4		15
5		15
6		15
Total		60

$x(t) = x_0 + v_{0x}t + \frac{1}{2}a_xt^2$	$\vec{F}_q = \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{r^2} \hat{r}$	$ec{B}=rac{\mu_0 i}{4\pi}\intrac{dec{s} imes\hat{r}}{r^2}$
$v_x(t) = v_{0x} + a_x t$	$ec{E}_q = rac{1}{4\pi\epsilon_0}rac{q}{r^2}\hat{r}$	$\oint \vec{B} \cdot d\vec{s} = \mu_0 i_{enc}$
$v_{fx}^{2} = v_{0x}^{2} + 2a_{x}\Delta x$ v^{2}	$ec{F_q} = qec{E}$	$B = rac{\mu_0 i}{2\pi R}$
$a_c = -\frac{r}{r}$	$\vec{p} = qd$	$B = \frac{\mu_0 i \phi}{\mu_0}$
$\sum \vec{F_i} = m\vec{a} = \frac{d\vec{p}}{dt}$	$\vec{\tau}_p = \vec{p} \times \vec{E}$	$D = 4\pi R$ $R = 4\pi R$
i $\vec{n} - m\vec{i}$	$U_p = -\vec{p} \cdot \vec{E}$	$B = \mu_0 n i$ $\mu_0 N i 1$
p = mv	$E_p(z) = \frac{1}{2\pi\epsilon_0} \frac{p}{z^3}$	$B = \frac{r^{-0}}{2\pi} \frac{1}{r}$
$\epsilon_0 = 8.85 \times 10^{-12}$	$\Phi_E = q_{enc}/\epsilon_0$	$B(z) = \frac{\mu_0 i R^2}{2(R^2 + z^2)^{3/2}}$
,	$\Phi_E = \oint ec{E} \cdot dec{A}$	$\vec{R}(z) = \frac{\mu_0}{\mu} \frac{\vec{\mu}}{z}$
$V_b - V_a = -\int_a^b \vec{E} \cdot d\vec{s}$	$\Phi_B = \oint ec{B} \cdot ec{dA}$	$\frac{D(z)}{2\pi} \frac{2\pi}{z^3}$ $n = N/L$
$V = \frac{1}{4\pi r} \frac{q}{r}$	– J	,
$\vec{E} = \frac{\partial V_{\hat{i}}}{\partial V_{\hat{j}}} = \frac{\partial V_{\hat{i}}}{\partial V_{\hat{j}}} = \frac{\partial V_{\hat{i}}}{\partial V_{\hat{i}}}$	$i = \frac{dq}{dq}$	${\cal E}=-rac{d\Phi_B}{dt}$
$E = -\frac{\partial x}{\partial x}i - \frac{\partial y}{\partial y}j - \frac{\partial z}{\partial z}k$	dt	$L = \frac{N\Phi_B}{N\Phi_B}$
$\vec{F}_B = q\vec{v} \times \vec{B}$	$i = \int J dA$	$L = -\frac{i}{i}$ di
$F_B = qvB\sin(\theta)$	V = iR	$\mathcal{E} = -L \frac{dt}{dt}$
$F_B = iL \times B$	V = q/C or $C = q/V$	$\mathcal{E}_{\{1,2\}} = -M \frac{di_{\{2,1\}}}{lt}$
$\tau = \mu \times D$ $\vec{u} = N i \vec{A}$	$\tau_C = RC$ $\tau_L = L/R$	$q(t) = Q\cos(\omega t + \phi)$
$ \begin{array}{c} \mu = N v H \\ v = E/B \end{array} $	$C = \frac{\epsilon_0 A}{\epsilon_0 A}$	$q(t) = Qe^{-t/2\tau_L}\cos(\omega' t + \phi)$
,	$C = \frac{1}{d}$	$\omega = \sqrt{1/LC}$
$U_E = \frac{q^2}{r} = \frac{1}{2}CV^2$	$C_{eq} = C_1 + C_2 + \dots$ 1 1 1	$\omega' = \sqrt{\omega^2 - (R/2L)^2}$
2 2C 2	$\overline{C_{eq}} = \overline{C_1} + \overline{C_2} + \dots$	$I = \mathcal{E}_m/Z$
$U_B - \frac{1}{2}Li^2$	$R_{eq} = R_1 + R_2 + \dots$	$Z = \sqrt{R^2 + (X_L - X_C)^2}$
$\tan(\phi) = \frac{X_L - X_C}{R}$	$\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \dots$	$X_L = \omega_d L$ $X_C = 1/\omega_d C$

Question 1: Find the direction of the induced emf in the following figure:

Question 2: A charged capacitor and an inductor are connected in series. At time t = 0 the current is zero and the capacitor is charged. If T is the period of the resulting oscillations, find the next time that the energy stored in the electric field of the capacitor is a maximum. Write your answer in terms of T.

Question 3: When the amplitude of the applied emf in a series RLC circuit is doubled,

- (a) the impedance is doubled.
- (b) the voltage across the capacitor is halved.
- (c) the capacitive reactance is halved.
- (d) the current amplitude is doubled.

Question 4: A tester-totter that has dimensions of 0.25 m \times 3 m has a decorative metal rim along its border. Two college students are goofing around on the tester-totter when the sun explodes; the explosion generates a roughly uniform and constant magnetic field B = 1 T straight toward the earth. If the angle of the tester-totter is given by $\theta(t) = (\pi/6) \sin(2\pi t)$, measured from horizontal, what is the induced emf in the metal loop on the tester-totter? **Question 5:** At a given moment, the current through an inductor points to the left and the induced emf points to the right, as shown in the figure below.

- (a) Is the current increasing, decreasing or staying the same?
- (b) If the induced emf is 5 mV and the change in current is 10 A/s, find the inductance of the inductor.
- (c) When paired with a capacitor of $C = 0.1 \ \mu\text{F}$ and a resistor of $R = 100 \Omega$, what is the natural frequency of the resulting RLC circuit?

 $emf \longrightarrow$ 1

Question 6: In a driven RLC circuit, the maximum applied emf is 125 V and the maximum current is 3.20 A. If the current leads the applied emf by $\phi = 0.982$ rad, find

- (a) the impedance, and
- (b) the resistance.
- (c) Is the circuit inductive $(X_L > X_C)$ or capacitive $(X_C > X_L)$?