PHYS 212 Homework Assignment

Chapter 6

Problem 1 Two spheres of radius R and $3 R$ both enclosing a positive charge q. How do the fluxes through each sphere compare to each other?

Problem 2 A $3.0 \mathrm{~cm} \times 5.0 \mathrm{~cm}$ rectangle lies in the xy-plane. What is the flux through the rectangle if:
(a) $\vec{E}=(50 \hat{i}+60 \hat{j}) \mathrm{N} / \mathrm{C}$
(b) $\vec{E}=(20 \hat{i}+40 \hat{k}) \mathrm{N} / \mathrm{C}$

Problem 3 You measure the electric field very close to the surface of a charged disk and find that it is $1500 \mathrm{~N} / \mathrm{C}$ pointing away from the disk. What is the surface charge density of the disk?

Problem 4 The figure below shows two infinite planes parallel do each other, separated by a distance d. One is a neutral conductor and the other is a material with a surface charge density σ. What are the electric fields $\vec{E}_{1}, \vec{E}_{2}, \vec{E}_{3}$ and \vec{E}_{4} in regions 1 to 4 ?

Problem 5 A very long, uniformly charged cylinder has radius R and linear charge density λ. Find the cylinder's electric field:
(a) Outside the cylinder, $r \geq R$.
(b) Inside the cylinder, $r \leq R$.
(c) Show that your answers agree at the boundary $r=R$.

