Circuits

"Invention is the most important product of man's creative brain. The ultimate purpose is the complete mastery of mind over the material world, the harnessing of human nature to human needs."

- Nikola Tesla

David J. Starling
 Penn State Hazleton PHYS 212

Work, Energy and EMF

A battery does work on charge in a circuit.

- How much work does it do, per charge?
- This is called the electromotive force, or emf.

Work, Energy and EMF
Single-Loop Circuits
Multi-Loop Circuits
RC Circuits

- Definition:

$$
\begin{equation*}
\mathcal{E}=\frac{d W}{d q} \tag{1}
\end{equation*}
$$

- Examples: batteries, generators, solar cells, fuel cells (H), electric eels, human nervous system

Work, Energy and EMF

Let's look at the energy in this circuit:

Work, Energy and EMF
Single-Loop Circuits
Multi-Loop Circuits
RC Circuits

- The battery does work: $d W=\mathcal{E} d q$
- The resistor dissipate energy: $P d t=i^{2} R d t$
- Recall the definition of current: $d q=i d t$

Work, Energy and EMF

Let's look at the energy in this circuit:

- Putting this together:

$$
\begin{aligned}
d W & =P d t \text { (conservation of energy) } \\
\mathcal{E} d q & =i^{2} R d t \\
\mathcal{E} i & =i^{2} R \\
\mathcal{E} & =i R
\end{aligned}
$$

Work, Energy and EMF
Single-Loop Circuits
Multi-Loop Circuits
RC Circuits

Work, Energy and EMF

Lecture Question 10.1:

Consider a circuit that contains an ideal battery and a resistor to form a complete circuit. Which one of the following statements concerning the work done by the battery is true?
(a) No work is done by the battery in such a circuit.
(b) The work done is equal to the thermal energy dissipated by the resistor.
(c) The work done is equal to the work needed to move a single charge from one side of the battery to the other.
(d) The work done is equal to the emf of the battery.
(e) The work done is equal to the product $i R$.

Single-Loop Circuits

A few rules to remember:

- Resistance Rule: the potential drops by $i R$ across a resistor in the direction of the current; the potential increases by $i R$ in the opposite direction.
- Emf Rule: the potential increases by \mathcal{E} from the negative to the positive terminal, regardless of the direction of current.
- Loop Rule: the sum of the changes in potential encountered in a complete traversal of any loop of a circuit must be zero.
- Junction Rule: the sum of the currents entering a junction equals the sum of the currents leaving that junction.

Single-Loop Circuits

Resistance Rule

- The potential drops by $i R$ across a resistor in the direction of the current; the potential increases by $i R$ in

Single-Loop Circuits
Multi-Loop Circuits
RC Circuits the opposite direction.

- $V_{f}-V_{i}=-i R$
- $\Delta V=-i R$
- Or, $V_{i}-V_{f}=+i R$ (against the current)

Single-Loop Circuits

Emf Rule

- The potential increases by \mathcal{E} from the negative to the positive terminal, regardless of the direction of current.

- The roles of V_{i} and V_{f} have switched.
- $V_{i}-V_{f}=\mathcal{E}$

Single-Loop Circuits

Loop Rule

- The sum of the changes in potential encountered in a complete traversal of any loop of a circuit must be zero.

Single-Loop Circuits
Multi-Loop Circuits
RC Circuits

- Start at V_{i} and end at V_{i} :
- $V_{i}-i R+\mathcal{E}=V_{i}$
- Opposite direction: $V_{i}-\mathcal{E}+i R=V_{i}$.
- Both equations: $\mathcal{E}-i R=0$

Single-Loop Circuits

Junction Rule

- The sum of the currents entering a junction equals the sum of the currents leaving that junction.

- For junction $b: i_{2}=i_{1}+i_{3}$
- For junction $d: i_{1}+i_{3}=i_{2}$

Single-Loop Circuits

Let's look at a "real" battery:

Work, Energy and EMF
Single-Loop Circuits
Multi-Loop Circuits
RC Circuits

- Most batteries have some internal resistance r.
- This resistance makes the battery voltage seem smaller than the emf \mathcal{E}.
- The larger the current, the worse the effect.

Single-Loop Circuits

Let's look at a "real" battery:

Work, Energy and EMF
Single-Loop Circuits
Multi-Loop Circuits
RC Circuits

- Let's sum up the changes:

$$
\begin{aligned}
\mathcal{E}-i r-i R & =0 \\
i & =\frac{\mathcal{E}}{r+R}
\end{aligned}
$$

Single-Loop Circuits

Another example:

Work, Energy and EMF
Single-Loop Circuits
Multi-Loop Circuits
RC Circuits

- Let's sum up the changes:

$$
\begin{aligned}
\mathcal{E}-i R_{1}-i R_{2}-i R_{3} & =0 \\
i & =\frac{\mathcal{E}}{R_{1}+R_{2}+R_{3}}
\end{aligned}
$$

This is the same if we replace all three series resistors with $R_{e q}=R_{1}+R_{2}+R_{3}$.

Single-Loop Circuits

For resistors in series:

Work, Energy and EMF
Single-Loop Circuits
Multi-Loop Circuits
RC Circuits

We replace them with an equivalent resistance:

$$
\begin{gather*}
R_{e q}=R_{1}+R_{2}+R_{3}=\sum_{i=1}^{3} R_{i} \tag{2}
\end{gather*}
$$

Single-Loop Circuits

Lecture Question 10.2

Which resistors, if any, are connected in series?

(a) R_{1} and R_{2}
(b) R_{1} and R_{3}
(c) R_{2} and R_{3}
(d) R_{1}, R_{2} and R_{3}
(e) None

Multi-Loop Circuits

Three parallel resistors:

Work, Energy and EMF
Single-Loop Circuits
Multi-Loop Circuits
RC Circuits

- Resistors in parallel all have the same voltage V
- But they may have different currents
- In this example, $i=i_{1}+i_{2}+i_{3}$

Multi-Loop Circuits

Three parallel resistors:

Work, Energy and EMF
Single-Loop Circuits
Multi-Loop Circuits
RC Circuits

- Each current is given by $i_{1}=V / R_{1}$
- This gives:

$$
i=i_{1}+i_{2}+i_{3}=\frac{V}{R_{1}}+\frac{V}{R_{2}}+\frac{V}{R_{3}}=V\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}\right)
$$

Multi-Loop Circuits

For three parallel resistors, we can use an equivalent resistance:

RC Circuits

- such that $V=i R_{e q}$, with

$$
\frac{1}{R_{e q}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}
$$

Multi-Loop Circuits

In summary:

Series
Parallel
Work, Energy and EMF
Single-Loop Circuits
Multi-Loop Circuits
RC Circuits

Capacitors

$\frac{1}{C_{\mathrm{eq}}}=\sum_{j=1}^{n} \frac{1}{C_{j}}$
Same charge on all capacitors

$$
C_{\mathrm{eq}}=\sum_{j=1}^{n} C_{j}
$$

Same potential difference across all capacitors

Series

$$
R_{\mathrm{eq}}=\sum_{j=1}^{n} R_{j}
$$

Same current through all resistors

Parallel
Resistors

$$
\frac{1}{R_{\mathrm{eq}}}=\sum_{j=1}^{n} \frac{1}{R_{j}}
$$

Same potential difference across all resistors

RC Circuits

Consider a circuit with a resistor and a capacitor

Work, Energy and EMF
Single-Loop Circuits
Multi-Loop Circuits
RC Circuits

With the battery connected, we find:

- $\mathcal{E}-i R-q / C=0$ (loop rule)
- $i=d q / d t$
- This gives:

$$
R \frac{d q}{d t}+\frac{q}{C}=\mathcal{E}
$$

RC Circuits

$$
R \frac{d q}{d t}+\frac{q}{C}=\mathcal{E}
$$

Single-Loop Circuits
Multi-Loop Circuits
RC Circuits
This is a differential equation

- The solution, with $q(0)=0$:

$$
q(t)=C \mathcal{E}\left(1-e^{-t / R C}\right)
$$

- Don't believe me? Let's check it!
- Note: $V=q / C=\mathcal{E}\left(1-e^{-t / R C}\right)$

RC Circuits

The combination $\tau=R C$ is the capacitive time constant.

- If $t=\tau$, then

$$
q(\tau)=C \mathcal{E}\left(1-e^{-R C / R C}\right)=0.63 C \mathcal{E}
$$

- τ is the time it takes for the capacitor to charge about 63%

RC Circuits

Once the capacitor is charged, let's remove the battery:

With the battery bypassed, we find:

- $-i R-q / C=0$ (loop rule)
- $i=d q / d t$
- This gives:

$$
R \frac{d q}{d t}+\frac{q}{C}=0
$$

RC Circuits

$$
R \frac{d q}{d t}+\frac{q}{C}=0
$$

- The solution, with $q(0)=C \mathcal{E}$:

$$
q(t)=C \mathcal{E} e^{-t / R C}
$$

- The battery discharges with the same time constant!

(b)

Work, Energy and EMF
Single-Loop Circuits
Multi-Loop Circuits
RC Circuits

RC Circuits

Lecture Question 10.4

For an RC circuit, how long does it take (in theory) for the capacitor to charge from 0% to 100% ?
(a) 0 s
(b) 63 s
(c) $R C$
(d) $1-R C$
(e) Infinitely long (it never charges completely)

