

Chapter 15 EM Oscillations

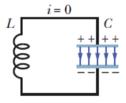
What are EM Oscillations?

Passive Circuits

Alternating Current (AC)

Power

"I've got an oscillating fan at my house. The fan goes back and forth. It looks like the fan is saying 'No.' So I like to ask it questions that a fan would say 'no' to. Do you keep my hair in place? Do you keep my documents in order? Do you have 3 settings? Liar! My fan... lied to me. Now I will pull the pin up. Now you ain't sayin' [nothin']."


-Mitch Hedberg

David J. Starling Penn State Hazleton PHYS 212

What are EM Oscillations?

We have seen circuits that grow/decay exponentially:

- RC circuit: $q(t) = CV(1 e^{-t/\tau_c})$ or $q(t) = CVe^{-t/\tau_c}$
- ► RL circuit: $i(t) = (V/R)(1 e^{-t/\tau_L})$ or $i(t) = (V/R)e^{-t/\tau_L}$
- But what if we put a charged capacitor together with an inductor?

Here, there is no energy dissipation!

Chapter 15 EM Oscillations

What are EM Oscillations?

Passive Circuits

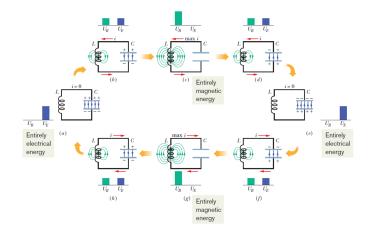
Alternating Current (AC)

Capacitors and inductors store energy:

 $U_E = \frac{q^2}{2C}$ $U_B = \frac{Li^2}{2}$

$$P = iV = i(Ldi/dt) \rightarrow U_B = \int Pdt = Li^2/2$$

- Initially, all the energy is stored in the capacitor and no current flows
- Eventually, the capacitor discharges and current flows
- The energy is transferred from the capacitor to the inductor... and then back!


Chapter 15 EM Oscillations

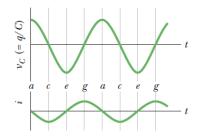
What are EM Oscillations?

Passive Circuits

Alternating Current (AC)

What are EM Oscillations?

Chapter 15 EM Oscillations


What are EM Oscillations?

Passive Circuits

Alternating Current (AC)

We can measure

- the voltage across the capacitor V = q/C
- the current in the circuit i
- ► We find:

► The voltage lags by 90°

Chapter 15 EM Oscillations

What are EM Oscillations?

Passive Circuits

Alternating Current (AC)

What are EM Oscillations?

An analogy: block on a spring

- Potential energy is like the energy in a capacitor $U \rightarrow U_E$
- Kinetic energy is like the energy in the inductor $K \rightarrow U_B$

Table 31-1

Comparison of the Energy in Two Oscillating Systems

Block-Spring System		LC Oscillator	
Element	Energy	Element	Energy
Spring	Potential, $\frac{1}{2}kx^2$	Capacitor	Electrical, $\frac{1}{2}(1/C)q^2$
Block	Kinetic, $\frac{1}{2}mv^2$	Inductor	Magnetic, $\frac{1}{2}Li^2$
v = dx/dt		i = dq/dt	

$$\blacktriangleright \ \omega = \sqrt{k/m} \to \sqrt{1/LC}$$

Chapter 15 EM Oscillations

What are EM Oscillations?

Passive Circuits

Alternating Current (AC)

Let's look more closely at this LC circuit:

• The total energy: $U = \frac{Li^2}{2} + \frac{q^2}{2C} = \text{ const}$

► Therefore,

$$\frac{dU}{dt} = \frac{d}{dt} \left(\frac{Li^2}{2} + \frac{q^2}{2C} \right)$$
$$= Li \frac{di}{dt} + \frac{q}{C} \frac{dq}{dt}$$
$$= L \frac{dq}{dt} \frac{d^2q}{dt^2} + \frac{q}{C} \frac{dq}{dt}$$
$$= 0$$
$$\frac{d^2q}{dt^2} + \frac{q}{LC} = 0$$

Solution: $q(t) = Q\cos(\omega t + \phi), i(t) = -I\sin(\omega t + \phi)$

• with
$$I = \omega Q$$
 and $\omega = \sqrt{1/LC}$

Chapter 15 EM Oscillations

What are EM Oscillations?

Passive Circuits

Alternating Current (AC)

For an LC circuit:

$$q(t) = Q\cos(\omega t + \phi)$$
(1)
$$i(t) = -I\sin(\omega t + \phi)$$
(2)

Therefore, the energy stored is:

►
$$U_E = \frac{q^2}{2C} = \frac{Q^2}{2C} \cos^2(\omega t + \phi)$$

► $U_B = \frac{Lt^2}{2} = \frac{1}{2}LI^2 \sin^2(\omega t + \phi) = \frac{Q^2}{2C} \sin^2(\omega t + \phi)$
[note: $I^2 = (\omega Q)^2 = Q^2/LC$]

Adding them up, we get

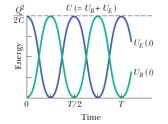
$$U = U_E + U_B = \frac{Q^2}{2C} [\sin^2(\omega t + \phi) + \cos^2(\omega t + \phi)] = \frac{Q^2}{2C}$$

What are EM Oscillations?

Passive Circuits

Alternating Current (AC)

For an LC circuit:

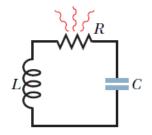

$$q(t) = Q \cos(\omega t + \phi)$$

$$i(t) = -I \sin(\omega t + \phi)$$

$$U_E = \frac{Q^2}{2C} \cos^2(\omega t + \phi)$$

$$U_B = \frac{Q^2}{2C} \sin^2(\omega t + \phi)$$

$$U_{total} = \frac{Q^2}{2C}$$



What are EM Oscillations?

Passive Circuits

Alternating Current (AC)

What if we throw a resistor in the mix?

How does the previous analysis change?

- Energy is no longer constant, but decreases over time
- The power dissipated by a resistor is just $P = iV = i^2 R$
- ► Therefore,

$$\frac{dU}{dt} = Li\frac{di}{dt} + \frac{q}{C}\frac{dq}{dt} = -i^2R$$
(3)

Chapter 15 EM Oscillations

What are EM Oscillations?

Passive Circuits

Alternating Current (AC)

The equation for an RLC circuit:

$$Li\frac{di}{dt} + \frac{q}{C}\frac{dq}{dt} = -i^{2}R$$
$$Li\frac{di}{dt} + \frac{q}{C}i = -i^{2}R$$
$$L\frac{d^{2}q}{dt^{2}} + \frac{q}{C} + iR = 0$$
$$L\frac{d^{2}q}{dt^{2}} + R\frac{dq}{dt} + \frac{q}{C} = 0$$

The solution:

$$q(t) = Qe^{-Rt/2L}\cos(\omega' t + \phi)$$

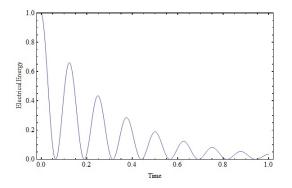
Frequency:

•
$$\omega' = \sqrt{\omega^2 - (R/2L)^2}$$

• $\omega = \sqrt{1/LC}$

Chapter 15 EM Oscillations

What are EM Oscillations?


Passive Circuits

Alternating Current (AC)

For an RLC circuit:

$$q(t) = Qe^{-Rt/2L}\cos(\omega' t + \phi)$$
$$U_E(t) = \frac{q^2}{2C} = \frac{Q^2}{2C}e^{-Rt/L}\cos^2(\omega' t + \phi)$$

The energy in the circuit dissipates over a time with a time constant $\tau_L = L/R$

Chapter 15 EM Oscillations

What are EM Oscillations?

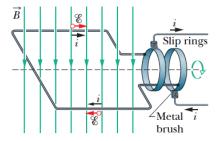
Passive Circuits

Alternating Current (AC)

Lecture Question 15.2

The current in an oscillating LC circuit is zero. Which one of the following statements is true?

- (a) The charge on the capacitor is equal to zero coulombs.
- (b) Charge is moving through the inductor.
- (c) The energy is equally shared between the electric and magnetic fields.
- (d) The energy in the electric field is maximized.
- (e) The energy in the magnetic field is maximized.


Chapter 15 EM Oscillations

What are EM Oscillations?

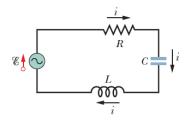
Passive Circuits

Alternating Current (AC)

Generators create an oscillating emf:

- As the flux varies, so does the enduced emf \mathcal{E}
- $\blacktriangleright \mathcal{E}(t) = \mathcal{E}\sin(\omega_d t)$

• Therefore,
$$i(t) = I \sin(\omega_d t - \phi)$$


Chapter 15 EM Oscillations

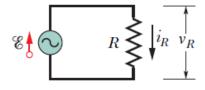
What are EM Oscillations?

Passive Circuits

Alternating Current (AC)

A general RLC circuit with an oscillating emf:

- The oscillations in the circuit are at frequency ω_d
- This is true even if $\omega_d \neq \omega'$
- The current moves back and forth through each element


Chapter 15 EM Oscillations

What are EM Oscillations?

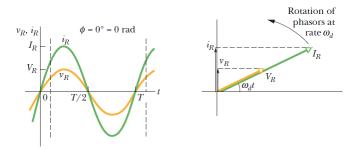
Passive Circuits

Alternating Current (AC)

Resistive load:

For this case,

- $\blacktriangleright \mathcal{E} iR = 0$
- $i = \mathcal{E}/R = \mathcal{E}_m \sin(\omega_d t)/R$
- In general, we expect $i(t) = I \sin(\omega_d t \phi)$
- For a resistive load, there is no phase delay ($\phi = 0^{\circ}$)


Chapter 15 EM Oscillations

What are EM Oscillations?

Passive Circuits

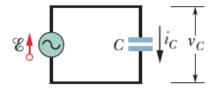
Alternating Current (AC)

We can graph the applied voltage and the resulting current:

Chapter 15 EM Oscillations

What are EM Oscillations?

Passive Circuits


Alternating Current (AC)

Power

On the right, we have a **phasor diagram**

- ► The angle of the phasor gives the argument of the sine
- The length of the phasor is the max value of v or i
- The projection onto the y-axis gives the instantaneous v or i

Capacitive load:

For this case,

- $\blacktriangleright q = Cv = CV\sin(\omega_d t)$
- $\blacktriangleright i = dq/dt = \omega_d CV \cos(\omega_d t) = (V/X_C) \cos(\omega_d t)$
- The **Capacitive Reactance**: $X_C = 1/\omega_d C$

•
$$X_C$$
 has units of ohms and $V = IX_C$.


Chapter 15 EM Oscillations

What are EM Oscillations?

Passive Circuits

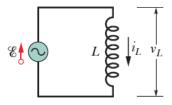
Alternating Current (AC)

We can graph the applied voltage and the resulting current:

Chapter 15 EM Oscillations

What are EM Oscillations?

Passive Circuits


Alternating Current (AC)

Power

On the right, we have a phasor diagram

- ▶ Notice how the current leads the voltage by 90°
- $\blacktriangleright q = CV\sin(\omega_d t)$
- $i = (V/X_C)\sin(\omega_d t + 90^\circ)$

Inductive load:

For this case,

 \blacktriangleright $v = Ldi/dt = V \sin(\omega_d t)$

$$\blacktriangleright \ \frac{di}{dt} = (V/L)\sin(\omega_d t)$$

Chapter 15 EM Oscillations

What are EM Oscillations?

Passive Circuits

Alternating Current (AC)

• Solving for i(t),

$$di = (V/L)\sin(\omega_d t)dt$$

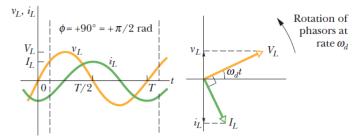
$$i(t) = \frac{V}{L}\int\sin(\omega_d t)dt$$

$$= -\frac{V}{\omega_d L}\cos(\omega_d t)$$

$$= \frac{V}{X_L}\sin(\omega_d t - 90^\circ)$$

• The Inductive Reactance: $X_L = \omega_d L$

• X_L has units of ohms and $V = IX_L$.


Chapter 15 EM Oscillations

What are EM Oscillations?

Passive Circuits

Alternating Current (AC)

We can graph the applied voltage and the resulting current:

On the right, we have a phasor diagram

- Notice how the current lags the voltage by 90°
- $v = V \sin(\omega_d t)$

•
$$i = (V/X_L)\sin(\omega_d t - 90^\circ)$$

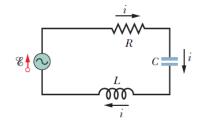
Chapter 15 EM Oscillations

What are EM Oscillations?

Passive Circuits

Alternating Current (AC)

Summary of Simple Circuits


What are EM Oscillations?

Passive Circuits

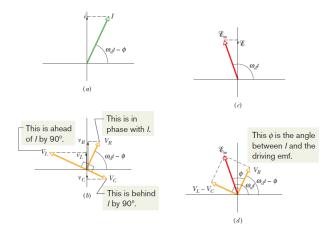
Alternating Current (AC)

Table 31-2 Phase and Amplitude Relations for Alternating Currents and Voltages							
Circuit Element	Symbol	Resistance or Reactance	Phase of the Current	Phase Constant (or Angle) ϕ	Amplitude Relation		
Resistor	R	R	In phase with v_R	$0^{\circ} (= 0 \text{ rad})$	$V_R = I_R R$		
Capacitor	С	$X_C = 1/\omega_d C$	Leads v_c by 90° (= $\pi/2$ rad)	$-90^{\circ} (= -\pi/2 \text{ rad})$	$V_C = I_C X_C$		
Inductor	L	$X_L = \omega_d L$	Lags v_L by 90° (= $\pi/2$ rad)	$+90^{\circ} (= +\pi/2 \text{ rad})$	$V_L = I_L X_L$		

Putting them together:

Each component operates as before:

- resistor: i(t) and $v_R(t)$ are in phase
- capacitor: i(t) leads $v_C(t)$ by 90°
- inductor: i(t) lags $v_L(t)$ by 90°


Chapter 15 EM Oscillations

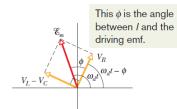
What are EM Oscillations?

Passive Circuits

Alternating Current (AC)

The result:

E is equal to the vector sum of the three potential differences


Chapter 15 EM Oscillations

What are EM Oscillations?

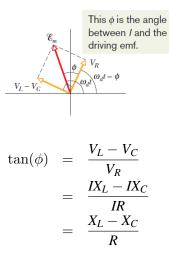
Passive Circuits

Alternating Current (AC)

The vectors:

$$\begin{aligned} \mathcal{E}_m^2 &= V_R^2 + (V_L - V_C)^2 \\ &= I^2 [R^2 + (X_L - X_C)^2 \\ I &= \frac{\mathcal{E}_m}{\sqrt{R^2 + (X_L - X_C)^2}} \\ I &= \mathcal{E}_m / Z \end{aligned}$$

Impedence: $Z = \sqrt{R^2 + (X_L - X_C)^2}$

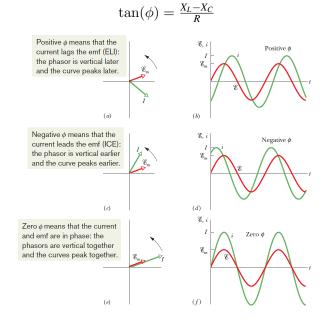

Chapter 15 EM Oscillations

What are EM Oscillations?

Passive Circuits

Alternating Current (AC)

We can now find the max current. But what is the phase between the applied voltage and the current?



Chapter 15 EM Oscillations

What are EM Oscillations?

Passive Circuits

Alternating Current (AC)

Chapter 15 EM Oscillations

What are EM Oscillations?

Passive Circuits

Alternating Current (AC)

Notice that the max current depends on the impedence:

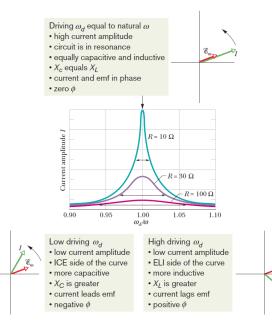
$$I = \frac{\mathcal{E}_m}{\sqrt{R^2 + (X_L - X_C)^2}}$$
$$= \mathcal{E}_m/Z$$

For a fixed R, I is max if $X_L = X_C$, so

$$\omega_d L = 1/\omega_d C$$

 $\omega_d = 1/\sqrt{LC}$

But if $X_L = X_C$, then $\phi = 0$.


This is called resonance!

Chapter 15 EM Oscillations

What are EM Oscillations?

Passive Circuits

Alternating Current (AC)

Chapter 15 EM Oscillations

What are EM Oscillations?

Passive Circuits

Alternating Current (AC)

Power

 \mathscr{C}_m

Lecture Question 15.4

An inductor circuit operates at a frequency f = 120 Hz. The peak voltage is 120 V and the peak current through the inductor is 2.0 A. What is the inductance of the inductor in the circuit?

- (a) 0.040 H
- **(b)** 0.080 H
- (c) 0.160 H
- (d) 0.320 H
- (e) 0.640 H

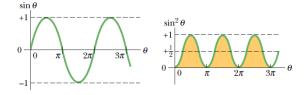
Chapter 15 EM Oscillations

What are EM Oscillations?

Passive Circuits

Alternating Current (AC)

Power


The power dissipated in the RLC circuit leaves through the resistor only:

$$P = i^{2}R$$

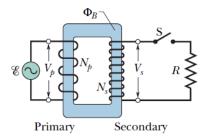
= $[I\sin(\omega_{d}t - \phi)]^{2}R$
= $I^{2}R\sin^{2}(\omega_{d}t - \phi)$

• The average power is just
$$P_{avg} = I^2 R/2$$

• Define:
$$I_{rms} = I/\sqrt{2}$$
 (root-mean-squared)

• This gives
$$P_{avg} = I_{rms}^2 R$$

Chapter 15 EM Oscillations


What are EM Oscillations?

Passive Circuits

Alternating Current (AC)

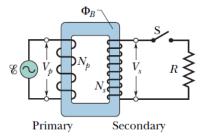
Power

A transformer changes one AC voltage to another AC voltage:

- A primary coil is wrapped around an iron core
- An emf is induced in a secondary coil also on the core
- The relationship between the two voltages is

$$V_s = V_p \frac{N_s}{N_p}$$

Chapter 15 EM Oscillations


What are EM Oscillations?

Passive Circuits

Alternating Current (AC)

Power

$$V_s = V_p \frac{N_s}{N_p}$$

- Step-up transformer: $N_s > N_p$
- Step-down transformer: $N_p > N_s$
- Energy is conserved: $I_p V_p = I_s V_s \rightarrow I_s = I_p N_p / N_s$

Chapter 15 EM Oscillations

What are EM Oscillations?

Passive Circuits

Alternating Current (AC)