Chapter 3 - First Law of Thermodynamics

The ideal gas law is a combination of three intuitive relationships between pressure, volume, temp and moles.

David J. Starling Penn State Hazleton Fall 2013 Chapter 3 (Volume 2) -First Law of Thermodynamics

First Law of Thermo

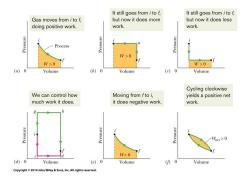
When a gas expands, it does work on its surroundings equal to

$$W = \int \vec{F} \cdot d\vec{s} = \int (pA)(ds) = \int p(A \, ds)$$
$$W = \int_{V_i}^{V_f} p \, dV$$

Thermal reservoir

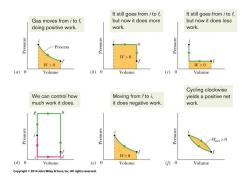
Chapter 3 (Volume 2) -First Law of Thermodynamics

We can graph p vs. volume—the area under the curve is work done.



Chapter 3 (Volume 2) -First Law of Thermodynamics

We can graph p vs. volume—the area under the curve is work done.



Use an inflated balloon to visualize the process.

Chapter 3 (Volume 2) -First Law of Thermodynamics

The thermodynamic quantities heat and work alter the energy of a system according to the first law of thermodynamics:

$$\Delta E_{int} = Q - W \tag{1}$$
$$dE_{int} = dQ - dW \tag{2}$$

Chapter 3 (Volume 2) -First Law of Thermodynamics

The thermodynamic quantities heat and work alter the energy of a system according to the first law of thermodynamics:

$$\Delta E_{int} = Q - W \tag{1}$$
$$dE_{int} = dQ - dW \tag{2}$$

Heat increases the internal energy of the system, but work decreases the internal energy of the system.

Chapter 3 (Volume 2) -First Law of Thermodynamics

There are four very important cases involving the first law of thermodynamics.

$Inc Law. \Delta L_{int} Q W (Eq. 10.20)$					
Process	Restriction	Consequence			
Adiabatic	Q = 0	$\Delta E_{\rm int} = -W$			
Constant volume	W = 0	$\Delta E_{ m int} = Q$			
Closed cycle	$\Delta E_{\rm int} = 0$	Q = W			
Free expansion	Q = W = 0	$\Delta E_{\rm int} = 0$			

 Table 18-5 The First Law of Thermodynamics: Four Special Cases

 The Law: $\Delta E_{-} = O - W(Ea, 18.26)$

Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.

Chapter 3 (Volume 2) -First Law of Thermodynamics

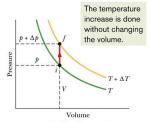
Which one of the following statements is not consistent with the first law of thermodynamics?

- (a) The internal energy of a finite system must be finite.
- (b) An engine may be constructed such that the work done by the machine exceeds the energy input to the engine.
- (c) An isolated system that is thermally insulated cannot do work on its surroundings nor can work be done on the system.
- (d) The internal energy of a system decreases when it does work on its surroundings and there is no flow of heat.
- (e) An engine may be constructed that gains energy while heat is transferred to it and work is done on it.

Chapter 3 (Volume 2) -First Law of Thermodynamics

When heat is added to a gas at constant volume, its temperature changes according to

 $Q = nC_V \Delta T$



Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.

Chapter 3 (Volume 2) -First Law of Thermodynamics

First Law of Thermo

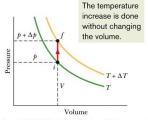
Molar Specific Heat

Adiabatic Expansion

(3)

When heat is added to a gas at constant volume, its temperature changes according to

 $Q = nC_V \Delta T$



- \triangleright *C_V* is the molar specific heat at constant volume
- From first law $\Delta E_{int} = Q W = Q = nC_V \Delta T$,

Chapter 3 (Volume 2) -First Law of Thermodynamics

First Law of Thermo

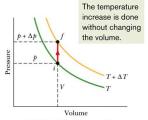
Molar Specific Heat

Adiabatic Expansion

(3)

When heat is added to a gas at constant volume, its temperature changes according to

 $Q = nC_V \Delta T$



- \triangleright C_V is the molar specific heat at constant volume
- From first law $\Delta E_{int} = Q W = Q = nC_V \Delta T$,

$$C_V = \frac{\Delta E_{int}}{n\Delta T} = \frac{\frac{3}{2}nRT}{n\Delta T} = \frac{3}{2}R \tag{4}$$

Chapter 3 (Volume 2) -First Law of Thermodynamics

First Law of Thermo

Molar Specific Heat

Adiabatic Expansion

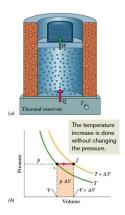
(3)

When heat is added to a gas at constant pressure, its temperature again changes according to

$$Q = nC_p \Delta T \tag{5}$$

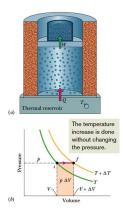
Chapter 3 (Volume 2) -First Law of Thermodynamics

First Law of Thermo



When heat is added to a gas at constant pressure, its temperature again changes according to

$$Q = nC_p \Delta T \tag{5}$$



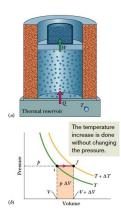
$$\blacktriangleright W = p\Delta V = nR\Delta T$$

Chapter 3 (Volume 2) -First Law of Thermodynamics

First Law of Thermo

When heat is added to a gas at constant pressure, its temperature again changes according to

$$Q = nC_p \Delta T \tag{5}$$



$$\blacktriangleright W = p\Delta V = nR\Delta T$$

$$\Delta E_{int} = nC_V \Delta T = Q - W$$

Chapter 3 (Volume 2) -First Law of Thermodynamics

First Law of Thermo

When heat is added to a gas at constant pressure, its temperature again changes according to

$$Q = nC_p \Delta T \tag{5}$$

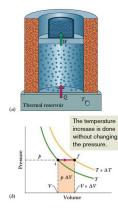
$$\blacktriangleright W = p\Delta V = nR\Delta T$$

$$\Delta E_{int} = nC_V \Delta T = Q - W$$
$$nC_V \Delta T = nC_p \Delta T - nR \Delta T$$

Chapter 3 (Volume 2) -First Law of Thermodynamics

First Law of Thermo Molar Specific Heat

Adiabatic Expansion



When heat is added to a gas at constant pressure, its temperature again changes according to

$$Q = nC_p \Delta T \tag{5}$$

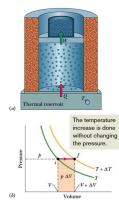
$$\blacktriangleright W = p\Delta V = nR\Delta T$$

$$\Delta E_{int} = nC_V \Delta T = Q - W$$
$$nC_V \Delta T = nC_p \Delta T - nR \Delta T$$
$$C_V = C_p - R$$

Chapter 3 (Volume 2) -First Law of Thermodynamics

First Law of Thermo Molar Specific Heat

Adiabatic Expansion



When heat is added to a gas at constant pressure, its temperature again changes according to

$$Q = nC_p \Delta T \tag{5}$$

$$\blacktriangleright W = p\Delta V = nR\Delta T$$

$$\Delta E_{int} = nC_V \Delta T = Q - W$$

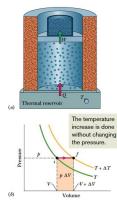
$$nC_V \Delta T = nC_p \Delta T - nR \Delta T$$

$$C_V = C_p - R$$

$$C_p = C_V + R$$

Chapter 3 (Volume 2) -First Law of Thermodynamics

First Law of Thermo

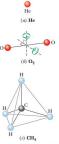


Molecules can store energy based upon their geometries, altering their specific heats.

Table 19-3 Degrees of Freedom for Various Molecules

Molecule	Example	Degrees of Freedom		Predicted Molar Specific Heats		
		Translational	Rotational	Total (f)	C _V (Eq. 19-51)	$C_p = C_V + R$
Monatomic	He	3	0	3	$\frac{3}{2}R$	$\frac{5}{2}R$
Diatomic	O_2	3	2	5	$\frac{5}{2}R$	$\frac{7}{2}R$
Polyatomic	CH_4	3	3	6	3 <i>R</i>	4R

Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.



Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.

Chapter 3 (Volume 2) -First Law of Thermodynamics

First Law of Thermo

Molar Specific Heat

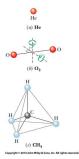
Adiabatic Expansion

Molecules can store energy based upon their geometries, altering their specific heats.

Table 19-3 Degrees of Freedom for Various Molecules

Molecule E		Degrees of Freedom		Predicted Molar Specific Heats		
	Example	Translational	Rotational	Total (f)	C _V (Eq. 19-51)	$C_p = C_V + R$
Monatomic	He	3	0	3	$\frac{3}{2}R$	$\frac{5}{2}R$
Diatomic	O_2	3	2	5	$\frac{5}{2}R$	$\frac{7}{2}R$
Polyatomic	CH_4	3	3	6	3 <i>R</i>	4R

Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.



Each degree of freedom gets about

- $\frac{1}{2}kT$ energy per molecule
- $\frac{1}{2}RT$ energy per mole

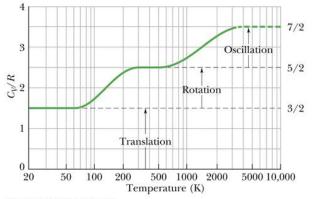
Chapter 3 (Volume 2) -First Law of Thermodynamics

First Law of Thermo

Molar Specific Heat

Adiabatic Expansion

Molecules can also store vibrational energy, but only at higher temperatures.



Chapter 3 (Volume 2) -First Law of Thermodynamics

First Law of Thermo

Molar Specific Heat Adiabatic Expansion

Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.

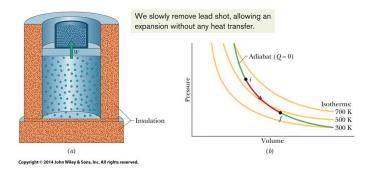
A monatomic gas particle has only 3 degrees of freedom and each particle in the gas has a thermal energy equal to (3/2)kT. How many degrees of freedom does a diatomic gas particle have and how much thermal energy does each molecule have?

- (a) 2, *kT*
- **(b)** 3, (3/2)kT
- (c) 4, 2*kT*
- (d) 5, (5/2)kT
- (e) 6, 3*kT*

Chapter 3 (Volume 2) -First Law of Thermodynamics

First Law of Thermo

Adiabatic expansion means that the volume changes while Q = 0; i.e., no heat is transferred.



Chapter 3 (Volume 2) -First Law of Thermodynamics

First Law of Thermo Molar Specific Heat Adiabatic Expansion

Let's derive the curve in (b) from first principles!

There is no heat transfer, Q = 0, so the first law reads:

$$dE_{int} = -p \, dV$$

Chapter 3 (Volume 2) -First Law of Thermodynamics

There is no heat transfer, Q = 0, so the first law reads:

$$dE_{int} = -p \, dV$$
$$nC_V \, dT = -p \, dV$$

Chapter 3 (Volume 2) -First Law of Thermodynamics

There is no heat transfer, Q = 0, so the first law reads:

$$dE_{int} = -p \, dV$$

$$nC_V \, dT = -p \, dV$$

$$n \, dT = \frac{-p \, dV}{C_V}$$

Chapter 3 (Volume 2) -First Law of Thermodynamics

There is no heat transfer, Q = 0, so the first law reads:

$$dE_{int} = -p \, dV$$

$$nC_V \, dT = -p \, dV$$

$$n \, dT = \frac{-p \, dV}{C_V}$$

Chapter 3 (Volume 2) -First Law of Thermodynamics

First Law of Thermo Molar Specific Heat Adiabatic Expansion

$$p dV + V dp = nR dT$$

There is no heat transfer, Q = 0, so the first law reads:

$$dE_{int} = -p \, dV$$

$$nC_V \, dT = -p \, dV$$

$$n \, dT = \frac{-p \, dV}{C_V}$$

Chapter 3 (Volume 2) -First Law of Thermodynamics

First Law of Thermo Molar Specific Heat Adiabatic Expansion

$$p \, dV + V \, dp = nR \, dT$$
$$n \, dT = \frac{p \, dV + V \, dp}{R}$$

There is no heat transfer, Q = 0, so the first law reads:

$$dE_{int} = -p \, dV$$

$$nC_V \, dT = -p \, dV$$

$$n \, dT = \frac{-p \, dV}{C_V}$$

Chapter 3 (Volume 2) -First Law of Thermodynamics

First Law of Thermo Molar Specific Heat Adiabatic Expansion

$$p \, dV + V \, dp = nR \, dT$$

$$n \, dT = \frac{p \, dV + V \, dp}{R}$$

$$= \frac{p \, dV + V \, dp}{C_p - C_V}$$

p

There is no heat transfer, Q = 0, so the first law reads:

$$dE_{int} = -p \, dV$$

$$nC_V \, dT = -p \, dV$$

$$n \, dT = \frac{-p \, dV}{C_V}$$

Chapter 3 (Volume 2) -First Law of Thermodynamics

First Law of Thermo Molar Specific Heat Adiabatic Expansion

$$dV + V dp = nR dT$$

$$n dT = \frac{p dV + V dp}{R}$$

$$= \frac{p dV + V dp}{C_p - C_V}$$

$$\frac{-p dV}{C_V} = \frac{p dV + V dp}{C_p - C_V}$$

p

There is no heat transfer, Q = 0, so the first law reads:

$$dE_{int} = -p \, dV$$

$$nC_V \, dT = -p \, dV$$

$$n \, dT = \frac{-p \, dV}{C_V}$$

Chapter 3 (Volume 2) -First Law of Thermodynamics

First Law of Thermo Molar Specific Heat Adiabatic Expansion

$$dV + V dp = nR dT$$

$$n dT = \frac{p dV + V dp}{R}$$

$$= \frac{p dV + V dp}{C_p - C_V}$$

$$\frac{-p dV}{C_V} = \frac{p dV + V dp}{C_p - C_V}$$

$$0 = \frac{dp}{p} + \frac{C_p}{C_V} \frac{dV}{V}$$

Integrating this equation, we find

$$\ln p + \frac{C_p}{C_V} \ln V = \text{constant}$$

Chapter 3 (Volume 2) -First Law of Thermodynamics

Integrating this equation, we find

$$\ln p + \frac{C_p}{C_V} \ln V = \text{constant}$$
$$\ln \left(p V^{C_p/C_V} \right) = \text{constant}$$

Chapter 3 (Volume 2) -First Law of Thermodynamics

Integrating this equation, we find

$$\ln p + \frac{C_p}{C_V} \ln V = \text{constant}$$
$$\ln \left(p V^{C_p/C_V} \right) = \text{constant}$$
$$p V^{C_p/C_V} = p V^{\gamma} = \text{constant}$$

Chapter 3 (Volume 2) -First Law of Thermodynamics

Integrating this equation, we find

$$\ln p + \frac{C_p}{C_V} \ln V = \text{constant}$$
$$\ln \left(p V^{C_p/C_V} \right) = \text{constant}$$
$$p V^{C_p/C_V} = p V^{\gamma} = \text{constant}$$

This results describes the adiabat in the p - V plane.

Chapter 3 (Volume 2) -First Law of Thermodynamics

Integrating this equation, we find

$$\ln p + \frac{C_p}{C_V} \ln V = \text{constant}$$
$$\ln \left(p V^{C_p/C_V} \right) = \text{constant}$$
$$p V^{C_p/C_V} = p V^{\gamma} = \text{constant}$$

This results describes the adiabat in the p - V plane.

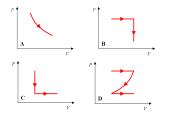
This also implies (using ideal gas law):

$$p_i V_i^{\gamma} = p_f V_f^{\gamma}$$

 $T_i V_i^{\gamma-1} = T_f V_f^{\gamma-1}$

Chapter 3 (Volume 2) -First Law of Thermodynamics

Consider the following pressure-volume graphs. Which of these graphs represents the behavior of a gas undergoing free expansion?



E. None of the graphs represent a gas undergoing free expansion.

Chapter 3 (Volume 2) -First Law of Thermodynamics