Chapter 1 - The Nature of Light

Chapter 1 - The Nature

 of LightTraveling Waves
Energy and Pressure
Polarization
Reflection and
Refraction

David J. Starling
 Penn State Hazleton PHYS 214

Traveling Waves

Chapter 1 - The Nature

 of Light
Electromagnetic radiation comes in many forms, differing only in wavelength, frequency or energy.

Traveling Waves

Energy and Pressure

Polarization

Reflection and
Refraction

Traveling Waves

Electromagnetic radiation comes in many forms, differing only in wavelength, frequency or energy.

Traveling Waves

Energy and Pressure

Polarization

Reflection and

Refraction

Traveling Waves

Traveling Waves
Energy and Pressure

Polarization

Reflection and
 Refraction

Traveling Waves

Traveling Waves
Energy and Pressure

Polarization

Reflection and

Refraction

Oscillating electrons in the antenna create an oscillating EM wave that travels out in all directions.

Traveling Waves

Traveling Waves

The electric and magnetic fields are perpendicular to each other and are transverse to the direction of propagation.

Energy and Pressure

Polarization

Reflection and
Refraction

Traveling Waves

The electric and magnetic fields are perpendicular to each other and are transverse to the direction of propagation.

Traveling Waves

Energy and Pressure

Polarization

Reflection and
Refraction

This is called a transverse wave and the "polarization" points along the electric field.

Traveling Waves

The wave's direction is given by the Poynting vector:

$$
\begin{equation*}
\vec{S}=\frac{1}{\mu_{0}} \vec{E} \times \vec{B} \tag{1}
\end{equation*}
$$

Traveling Waves
Energy and Pressure

Polarization

Reflection and
Refraction

Traveling Waves

The wave's direction is given by the Poynting vector:

$$
\vec{S}=\frac{1}{\mu_{0}} \vec{E} \times \vec{B}
$$

Traveling Waves
Energy and Pressure

Polarization

Reflection and

Refraction

Traveling Waves

The speed of an electromagnetic wave is constant (in vaccuum) and is given by

$$
c=\frac{1}{\sqrt{\mu_{0} \epsilon_{0}}}=3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}
$$

Traveling Waves

Energy and Pressure

Polarization

Reflection and
Refraction

Traveling Waves

The speed of an electromagnetic wave is constant (in vaccuum) and is given by

$$
c=\frac{1}{\sqrt{\mu_{0} \epsilon_{0}}}=3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}
$$

In a material, use the material's permitivity ϵ instead of ϵ_{0}. For example, in water, $v_{l}=2.25 \times 10^{8} \mathrm{~m} / \mathrm{s}$.

Traveling Waves

As the wave travels past a point in space, the electric and magnetic fields oscillate in phase.

Chapter 1 - The Nature

 of Light
Traveling Waves

Energy and Pressure

Polarization

Reflection and
Refraction

Traveling Waves

The oscillations of the EM wave tend to be

 sinusoidal:$$
\begin{aligned}
& E(x, t)=E_{m} \sin (k x-\omega t) \\
& B(x, t)=B_{m} \sin (k x-\omega t)
\end{aligned}
$$

Traveling Waves

Energy and Pressure
Polarization
Reflection and
Refraction

Traveling Waves

The oscillations of the EM wave tend to be sinusoidal:

$$
\begin{aligned}
& E(x, t)=E_{m} \sin (k x-\omega t) \\
& B(x, t)=B_{m} \sin (k x-\omega t)
\end{aligned}
$$

Recall that the speed of a traveling wave is given by $c=\omega / k$ and that $k=2 \pi / \lambda$ is the spatial frequency.

Energy and Pressure

Using the Poynting vector, we can calculate the average rate of energy transmitted by plane waves for a unit area:

$$
\begin{aligned}
I & =\left\langle\frac{E}{\mu_{0}} B\right\rangle \\
& =\left\langle\frac{E}{\mu_{0}} \frac{E}{c}\right\rangle \\
& =\left\langle\frac{E^{2}}{\mu_{0} c}\right\rangle \\
& =\frac{1}{2 c \mu_{0}} E_{m}^{2}
\end{aligned}
$$

Energy and Pressure

Using the Poynting vector, we can calculate the average rate of energy transmitted by plane waves for a unit area:

$$
\begin{aligned}
I & =\left\langle\frac{E}{\mu_{0}} B\right\rangle \\
& =\left\langle\frac{E}{\mu_{0}} \frac{E}{c}\right\rangle \\
& =\left\langle\frac{E^{2}}{\mu_{0} c}\right\rangle \\
& =\frac{1}{2 c \mu_{0}} E_{m}^{2}
\end{aligned}
$$

For plane waves, Maxwell's Equations require $B=E / c$.

Energy and Pressure

Intensity is a measure of how much power is concentrated into a certain area: of Light

Traveling Waves
Energy and Pressure
Polarization
Reflection and
Refraction

Energy and Pressure

Intensity is a measure of how much power is concentrated into a certain area:

$$
I=\frac{\text { power }}{\text { area }}
$$

For a spherical wave, $I=P / 4 \pi r^{2}$.

Energy and Pressure

Power and force are related by speed ($P=F v$), and this relationship holds for light as well.

$$
F=\frac{P}{c}=\frac{I A}{c}
$$ of Light

Traveling Waves

Energy and Pressure

Polarization

Reflection and

Refraction

Energy and Pressure

Power and force are related by speed $(P=F v)$, and this relationship holds for light as well.

$$
F=\frac{P}{c}=\frac{I A}{c}
$$

Traveling Waves

Energy and Pressure

Polarization

Reflection and

Refraction

If the light is reflected, then force is doubled: $F=2 I A / c$.

Energy and Pressure

This force can result in a pressure, known as radiation pressure ($p_{r}=F / A$):

$$
p_{r}=\frac{I}{c}
$$

Traveling Waves

Energy and Pressure

Polarization

Reflection and

Refraction

Energy and Pressure

This force can result in a pressure, known as radiation pressure ($p_{r}=F / A$):

$$
p_{r}=\frac{I}{c}
$$

Traveling Waves

Energy and Pressure

Polarization

Reflection and

Refraction

If the light is reflected, then pressure is doubled: $p_{r}=2 I / c$.

Energy and Pressure

Lecture Question 1.1

Monochromatic electromagnetic radiation illuminates a surface. The electric and magnetic fields of the waves are then doubled in magnitude. How is the total energy incident on the surface, per unit time, affected by this increase?
(a) The total energy is not affected by this change.
(b) The total energy will increase by a factor of two.
(c) The total energy will increase by a factor of four.
(d) The total energy will decrease by a factor of two.
(e) The total energy will decrease by a factor of four.

Polarization

 of LightThe direction of the electric field is the direction of polarization of the EM wave.

Traveling Waves

Energy and Pressure
Polarization
Reflection and
Refraction

Polarization

The direction of the electric field is the direction of polarization of the EM wave.

Traveling Waves

Energy and Pressure

Polarization

Reflection and

Refraction

However, the direction of the polarization may change with time, resulting in a variety of possibilities.

Polarization

Chapter 1 - The Nature

 of Light
Linearly polarized light means the polarization

 direction is a constant in time.
(a)

(b)

Traveling Waves

Energy and Pressure

Polarization

Reflection and
Refraction

Polarization

 of Light
Linearly polarized light means the polarization

 direction is a constant in time.
Traveling Waves

Energy and Pressure

Polarization

Reflection and
Refraction

(a)

(b)

Copyright 02014 John Wiley \& Sons, Inc. All rights reserved.

Light coming from most lasers is linearly polarized.

Polarization

Chapter 1 - The Nature

 of LightUnpolarized light means the polarization direction changes randomly in time.

Traveling Waves

Energy and Pressure
Polarization
Reflection and
Refraction

Unpolarized light headed toward you-the electric fields are in all directions in the plane.

Polarization

Unpolarized light means the polarization direction changes randomly in time.

Traveling Waves

Energy and Pressure
Polarization
Reflection and
Refraction

Unpolarized light headed toward you-the electric fields are in all directions in the plane.

Light coming from fire or the sun is unpolarized.

Polarization

Traveling Waves

Energy and Pressure

Polarization

Reflection and

Refraction

Polarization

Traveling Waves

Circularly polarized light means the polarization direction rotates in a circle at a constant rate.

Energy and Pressure

Polarization

Reflection and

Refraction

Polarization

Elliptically polarized light means the electric field rotates, tracing out an ellipse.

Chapter 1 - The Nature of Light

Traveling Waves

Energy and Pressure
Polarization
Reflection and
Refraction

Polarization

Chapter 1 - The Nature
of Light
Elliptically polarized light means the electric field rotates, tracing out an ellipse.

Traveling Waves

Energy and Pressure

Polarization

Reflection and

Refraction

This can also be created with optics in a lab.

Polarization

Chapter 1 - The Nature

 of LightWhen light passes through a linear polarizer, only some of the light is transmitted.

Traveling Waves
Energy and Pressure
\section*{Polarization}
\section*{Reflection and}
Refraction

Polarization

When light passes through a linear polarizer, only some of the light is transmitted.

For unpolarized light, the light that passes through becomes linearly polarized and its intensity drops to

$$
I=I_{0} / 2
$$

Polarization

The light always takes on the polarization direction of the polarizing material.

Chapter 1 - The Nature

 of Light
Traveling Waves

Energy and Pressure

Polarization

Reflection and
 Refraction

Polarization

The light always takes on the polarization direction of the polarizing material.

Traveling Waves

Energy and Pressure

Polarization

Reflection and
Refraction

The intensity always drops as

$$
I=I_{0} \cos ^{2}(\theta)
$$

where θ is the angle between the light's polarization and the polarizer.

Polarization

Lecture Question 1.2

Unpolarized light with intensity S is incident on a series of polarizing sheets. The first sheet has its transmission axis oriented at 0°. A second polarizer has its transmission axis oriented at 45° and a third polarizer oriented with its axis at 90°. Determine the fraction of light intensity exiting the third sheet with and without the second sheet present.
(a) $S / 2, S$
(b) $S / 2,0$
(c) $S / 4,0$
(d) $S / 3, S / 2$
(e) $S, S / 2$

Reflection and Refraction

When light interacts with a surface, it can reflect off of or refract into the material.

(b)

Chapter 1 - The Nature of Light

Traveling Waves

Energy and Pressure
Polarization
Reflection and
Refraction

Reflection and Refraction

 of Light
When light interacts with a surface, it can reflect off of or refract into the material.

Traveling Waves

Energy and Pressure
Polarization
Reflection and
Refraction

How does the light behave? (Can derive completely from Maxwell's Equations...)

Reflection and Refraction

A reflected ray lies in the plane of incidence and has an angle of reflection equal to the angle of incidence.

$$
\theta_{1}=\theta_{1}^{\prime}
$$

Traveling Waves

Energy and Pressure
Polarization
Reflection and Refraction

Reflection and Refraction

 of LightA reflected ray lies in the plane of incidence and has an angle of reflection equal to the angle of incidence.

$$
\theta_{1}=\theta_{1}^{\prime}
$$

Traveling Waves

Energy and Pressure
Polarization
Reflection and Refraction

This is the Law of Reflection.

Reflection and Refraction

Chapter 1 - The Nature

of Light
A refracted ray lies in the plane of incidence and has an angle of refraction θ_{2} related to the angle of incidence θ_{1} by

$$
n_{2} \sin \theta_{2}=n_{1} \sin \theta_{1} \text { (Snell's Law) }
$$

Traveling Waves
Energy and Pressure
Polarization
Reflection and Refraction

Reflection and Refraction

of Light
A refracted ray lies in the plane of incidence and has an angle of refraction θ_{2} related to the angle of incidence θ_{1} by

$$
n_{2} \sin \theta_{2}=n_{1} \sin \theta_{1} \text { (Snell's Law) }
$$

n is the index of refraction and is related to the speed of light in the material $\left(v_{1}=c / n_{1}\right)$.

Reflection and Refraction

Snell's Law results in total internal reflection when light shines from high index $\left(n_{1}\right)$ to low index (n_{2}).

Traveling Waves

Energy and Pressure
Polarization
Reflection and
Refraction

$$
n_{2} \sin 90^{\circ}=n_{1} \sin \theta_{c} \rightarrow \theta_{c}=\sin ^{-1}\left(n_{2} / n_{1}\right)
$$

Reflection and Refraction

 of LightSnell's Law results in total internal reflection when light shines from high index $\left(n_{1}\right)$ to low index $\left(n_{2}\right)$.

Traveling Waves

Energy and Pressure

Polarization

Reflection and
Refraction

$$
n_{2} \sin 90^{\circ}=n_{1} \sin \theta_{c} \rightarrow \theta_{c}=\sin ^{-1}\left(n_{2} / n_{1}\right)
$$

At this critical angle, all light is reflected. (e.g. in a pool, or a fiber optic cable)

Reflection and Refraction

Chapter 1 - The Nature

of Light

For every material, the index of refraction varies with the color of light. This gives rise to chromatic dispersion.

(a)
 bent more than red.

Traveling Waves
Energy and Pressure
Polarization
Reflection and
Refraction

Reflection and Refraction

Chapter 1 - The Nature

of Light

For every material, the index of refraction varies with the color of light. This gives rise to chromatic dispersion.

(a)

(b)

This is the principle behind prisms and rainbows.

Reflection and Refraction

Water droplets act as a dispersive material for sunlight and a rainbow forms given a certain geometry.

Traveling Waves
Energy and Pressure
Polarization
Reflection and
Refraction

Reflection and Refraction

 of LightWater droplets act as a dispersive material for sunlight and a rainbow forms given a certain geometry.

Inside the droplet the light refracts, is totally internally reflected and then refracts again.

Reflection and Refraction

Chapter 1 - The Nature

 of LightWhen unpolarized light reflects off of a surface at the Brewster angle θ_{B}, it becomes polarized in the plane of the surface.

$$
\theta_{B}=\tan ^{-1}\left(n_{2} / n_{1}\right)
$$

- Component perpendicular to page
\longleftrightarrow Component parallel to page

Traveling Waves
Energy and Pressure

Polarization

Reflection and Refraction

Reflection and Refraction

 of LightWhen unpolarized light reflects off of a surface at the Brewster angle θ_{B}, it becomes polarized in the plane of the surface.

$$
\theta_{B}=\tan ^{-1}\left(n_{2} / n_{1}\right)
$$

- Component perpendicular to page
\leftrightarrow Component parallel to page

This is the result of solving Maxwell's Equations at the boundary.

Reflection and Refraction

 of Light
Traveling Waves

Energy and Pressure

Polarization

Lecture Question 1.3

Is light bent more, less, or not at all when entering a medium with a smaller index of refraction than that of the incident medium?
(a) more
(b) less
(c) not at all

