Chapter 2 - Geometric Optics

Chapter 2 - Geometric

 OpticsImages and Plane
Mirrors
Spherical Mirrors

Lenses

Optical Instruments

David J. Starling
 Penn State Hazleton
 PHYS 214

Images and Plane Mirrors

The human eye is a visual system that collects light and forms an image on the retina.

Chapter 2 - Geometric Optics

Images and Plane

Mirrors

Spherical Mirrors

Lenses

Optical Instruments

Images and Plane Mirrors

The human eye is a visual system that collects light and forms an image on the retina.

Images and Plane
Mirrors
Spherical Mirrors

Lenses

Optical Instruments

The lens changes shape to to image objects at different distances.

Images and Plane Mirrors

Without a visual system, light spreads out in all directions.

Images and Plane
Mirrors
Spherical Mirrors

Lenses

Optical Instruments

Images and Plane Mirrors

Without a visual system, light spreads out in all directions.

Images and Plane

Mirrors
Spherical Mirrors

Lenses

Optical Instruments

Wavefronts propagate spherically from the source unless blocked or collected and imaged with a lens or mirror.

Images and Plane Mirrors

Chapter 2 - Geometric Optics

An "image" is a reproduction of an object in the form of light.

Images and Plane

Mirrors

Spherical Mirrors
Lenses
Optical Instruments

Images and Plane Mirrors

An "image" is a reproduction of an object in the form of light.

- A real image faithfully reproduces the object without a visual system.

Images and Plane
Mirrors

Lenses

Optical Instruments

Spherical Mirrors

Images and Plane Mirrors

An "image" is a reproduction of an object in the form of light.

Images and Plane
Mirrors
Spherical Mirrors

Lenses

Optical Instruments

- A real image faithfully reproduces the object without a visual system.
- A virtual image requires a visual system to reproduce the object.

(a)

(b)

(c)

(d)

Images and Plane Mirrors

Plane (flat) mirrors form virtual images.

Images and Plane

Mirrors

Spherical Mirrors

Lenses

Optical Instruments

Images and Plane Mirrors

Plane (flat) mirrors form virtual images.

Images and Plane

Mirrors
Spherical Mirrors

Lenses

Optical Instruments

Using the eye to form the real image, the object appears to be on the opposite side of the mirror. (note: $i=-p$)

Images and Plane Mirrors

We often draw objects (O) and images (I) as arrows.

Images and Plane Mirrors

Spherical Mirrors

Lenses

Optical Instruments

Images and Plane Mirrors

We often draw objects (O) and images (I) as arrows.

Images and Plane Mirrors

Spherical Mirrors

Lenses

Optical Instruments

- magnification: the size of the arrow
- inversion: direction of arrow
- location: distance from mirror $(p>0$ and $i<0)$

Spherical Mirrors

Spherical mirrors make the rays diverge either more quickly or more slowly compared to a plane mirror.

Images and Plane

Mirrors

Spherical Mirrors

Lenses

Optical Instruments

Bending the mirror

Spherical Mirrors

Spherical mirrors make the rays diverge either more quickly or more slowly compared to a plane mirror.

Images and Plane

 MirrorsSpherical Mirrors

Lenses

Optical Instruments

Bending the mirror

The radius of curvature of the mirror r determines how the virtual image will form.

Spherical Mirrors

A concave mirror "caves in" toward the object and forms a virtual image that is magnified but appears far away.

Images and Plane

Mirrors
Spherical Mirrors

Lenses

Optical Instruments

Bending the mirror
this way shifts
the image away.

Spherical Mirrors

A concave mirror "caves in" toward the object and forms a virtual image that is magnified but appears far away.

Images and Plane

 MirrorsSpherical Mirrors

Lenses

Optical Instruments

C is the center of curvature. Distances are measured from the face of the mirror with $p>0$ and $i<0$.

Spherical Mirrors

A convex mirror bends away from the object and forms a virtual image that is shrunk but appears closer.

Images and Plane

Mirrors
Spherical Mirrors

Lenses

Optical Instruments

Spherical Mirrors

A convex mirror bends away from the object and forms a virtual image that is shrunk but appears closer.

Images and Plane

Mirrors
Spherical Mirrors

Lenses

Optical Instruments

This gives the viewer a larger "field of view" and is how rear-view and side-view mirrors for cars are made.

Spherical Mirrors

Spherical mirrors have a focus at a distance

$$
f= \pm r / 2 .
$$

Images and Plane
Mirrors
Spherical Mirrors

Lenses

Optical Instruments

Spherical Mirrors

Spherical mirrors have a focus at a distance

$$
f= \pm r / 2 .
$$

A concave mirror focuses parallel rays to a point. A convex mirror produces a virtual focus.

Spherical Mirrors

Images and Plane

Mirrors
Spherical Mirrors rays always diverge). But a concave mirror can form a real image.

Lenses

Optical Instruments

Spherical Mirrors

Images and Plane

Mirrors
Convex mirrors always form virtual images (the rays always diverge). But a concave mirror can form a real image.

Spherical Mirrors

Lenses

Optical Instruments

How can we predict the location and size of the image?

Spherical Mirrors

For a mirror or lens, the focal length, image and object distances are related by:

$$
\begin{equation*}
\frac{1}{p}+\frac{1}{i}=\frac{1}{f} \tag{1}
\end{equation*}
$$

Images and Plane Mirrors

Spherical Mirrors

Lenses

Optical Instruments

Spherical Mirrors

For a mirror or lens, the focal length, image and object distances are related by:

$$
\begin{equation*}
\frac{1}{p}+\frac{1}{i}=\frac{1}{f} \tag{1}
\end{equation*}
$$

From this, we can predict i given f and $p[i=f p /(p-f)]$.

Spherical Mirrors

The magnification is the ratio of the image size to the object size:

$$
m=\frac{h^{\prime}}{h}
$$

Images and Plane

Mirrors

Spherical Mirrors

Lenses

Optical Instruments

Spherical Mirrors

The magnification is the ratio of the image size to the object size:

$$
m=\frac{h^{\prime}}{h}
$$

Images and Plane

 MirrorsSpherical Mirrors

Lenses

Optical Instruments

Using similar triangles, we find that $m=-i / p$.

Spherical Mirrors

There are four rays that can be used to locate the image.

Images and Plane Mirrors

Spherical Mirrors

Lenses

Optical Instruments

Spherical Mirrors

There are four rays that can be used to locate the image.

- Incoming parallel ray reflects through focus.

Images and Plane Mirrors

Spherical Mirrors

Lenses

Optical Instruments

Spherical Mirrors

There are four rays that can be used to locate the image.

- Incoming parallel ray reflects through focus.

Images and Plane Mirrors

Spherical Mirrors

Lenses

Optical Instruments

- Incoming focal ray reflect parallel.

Spherical Mirrors

There are four rays that can be used to locate the image.

- Incoming parallel ray reflects through focus.

Images and Plane Mirrors

Spherical Mirrors

Lenses

Optical Instruments

- Incoming focal ray reflect parallel.
- Incoming central ray reflects on itself.

Spherical Mirrors

There are four rays that can be used to locate the image.

- Incoming parallel ray reflects through focus.

Images and Plane Mirrors

Spherical Mirrors

Lenses

Optical Instruments

- Incoming focal ray reflect parallel.
- Incoming central ray reflects on itself.
- Incoming centered ray reflects symmetrically.

Lecture Question 2.1

An object is placed at the center of curvature of a concave spherical mirror. Which of the following descriptions best describes the image produced in this situation?
(a) upright, larger, real
(b) inverted, same size, real
(c) upright, larger, virtual
(d) inverted, smaller, real
(e) inverted, larger, virtual

Spherical Mirrors

Lenses

A lens is a transparent object used to shape light.

Chapter 2 - Geometric Optics

Images and Plane

Mirrors

Spherical Mirrors

Lenses

Optical Instruments

Lenses

A lens is a transparent object used to shape light.

Images and Plane

Mirrors
Spherical Mirrors

Lenses

Optical Instruments

The material and shape of the object determine how it behaves.

Lenses

Consider a simplified lens with only one refracting surface.

Images and Plane

Mirrors
Spherical Mirrors

Lenses

Optical Instruments

Lenses

Consider a simplified lens with only one refracting surface.

Images and Plane

Mirrors
Spherical Mirrors

Lenses

Optical Instruments

This system is governed by

$$
\begin{equation*}
\frac{n_{1}}{p}+\frac{n_{2}}{i}=\frac{n_{2}-n_{1}}{r} \tag{2}
\end{equation*}
$$

Lenses

There are other possible geometries:

(c)

(e)

(d)

(f)

Images and Plane

Mirrors
Spherical Mirrors

Lenses

Optical Instruments

Lenses

There are other possible geometries:

$$
\frac{n_{1}}{p}+\frac{n_{2}}{i}=\frac{n_{2}-n_{1}}{r}
$$

Images and Plane

Mirrors

Spherical Mirrors

Lenses

Optical Instruments

Lenses

The lens maker's equation determines the focal length given the lens's physical properties.

$$
\begin{equation*}
\frac{1}{f}=(n-1)\left(\frac{1}{r_{1}}-\frac{1}{r_{2}}\right) \tag{3}
\end{equation*}
$$

Images and Plane

Mirrors
Spherical Mirrors

Lenses

Optical Instruments

Lenses

The lens maker's equation determines the focal length given the lens's physical properties.

$$
\begin{equation*}
\frac{1}{f}=(n-1)\left(\frac{1}{r_{1}}-\frac{1}{r_{2}}\right) \tag{3}
\end{equation*}
$$

Images and Plane

 MirrorsSpherical Mirrors

Lenses

Optical Instruments

Lenses

The focal point can be found using parallel rays.

To find the focus,
send in rays parallel to the central axis.

(a)

(c)

The bending occurs only at the surfaces.

(b)

(d)

Images and Plane

Mirrors

Spherical Mirrors

Lenses

Optical Instruments

Lenses

The focal point can be found using parallel rays.

To find the focus, send in rays parallel to the central axis.

(a)

(c)

The bending occurs only at the surfaces.

(b)

(d)

Images and Plane

Mirrors

Spherical Mirrors

Lenses

Optical Instruments

A convex lens has a real focal point, but a concave lens has a virtual focal point.

Lenses

Chapter 2 - Geometric

 OpticsConverging lenses have positive focal lengths, but diverging lenses have negative focal lengths.

To find the focus, send in rays parallel to the central axis.

(a)

(c)

(b)

The bending occurs only at the surfaces.

(d)

Images and Plane

Mirrors

Spherical Mirrors

Lenses

Optical Instruments

Lenses

Converging lenses have positive focal lengths, but diverging lenses have negative focal lengths.

To find the focus, send in rays parallel to the central axis.

(a)

(c)

The bending occurs only at the surfaces.

(b)

(d)

This is important in applications of the thin lens equation $\left(\frac{1}{p}+\frac{1}{i}=\frac{1}{f}\right)$.

Lenses

Three rays (parallel, focal and central) can be used to find the image of an object with a thin lens.

Images and Plane

Mirrors
Spherical Mirrors

Lenses

Optical Instruments

(c)

Lenses

Three rays (parallel, focal and central) can be used to find the image of an object with a thin lens.

Images and Plane

 MirrorsSpherical Mirrors

Lenses

Optical Instruments

- Parallel ray: moves parallel to the central axis, then passes through the focal point
- Focal ray: reversed (first through the focus, then parallel)
- Central ray: passes through the center of the lens unaffected.

Lenses

When imaging with two lenses, apply the thin lens equation
(a) on the first lens, ignoring lens two;
(b) then on the second lens, ignoring lens one.

Lenses

When imaging with two lenses, apply the thin lens equation
(a) on the first lens, ignoring lens two;
(b) then on the second lens, ignoring lens one.

Lenses

When imaging with two lenses, apply the thin lens equation
(a) on the first lens, ignoring lens two;
(b) then on the second lens, ignoring lens one.

The image of lens 1 is an object for lens 2.

Lenses

The image of lens 1 can be past lens 2 entirely.

Optical Instruments

Lenses

The image of lens 1 can be past lens 2 entirely.

Images and Plane

Mirrors

Spherical Mirrors

Lenses

Optical Instruments

In this case, the object distance p_{2} for lens 2 is negative.

Lenses

There are many other arrangements.

Chapter 2 - Geometric Optics

Images and Plane Mirrors

Spherical Mirrors

Lenses
Optical Instruments

Lenses

There are many other arrangements.

Images and Plane

Mirrors

Spherical Mirrors

Lenses

Optical Instruments

Lenses

Lecture Question 2.2

An object is located 25 cm to the left of a converging lens that has a focal length of 12 cm , producing a real image. If
you wanted to produce a larger real image without changing the distance between the object and lens, you should replace the lens with a
(a) 4 cm focal length diverging lens.
(b) 4 cm focal length converging lens.
(c) 12 cm focal length diverging lens.
(d) 20 cm focal length converging lens.
(e) 20 cm focal length diverging lens.

Optical Instruments

Images and Plane

Mirrors
The near point P_{n} of the eye is the closest distance the eye can bring into focus (about 25 cm).

Spherical Mirrors

Lenses

Optical Instruments

Optical Instruments

The near point P_{n} of the eye is the closest distance the eye can bring into focus (about 25 cm).

Images and Plane

Mirrors
Spherical Mirrors
Lenses
Optical Instruments

However, using a magnifying glass, objects can be brought closer than 25 cm while appearing to be much father away.

Optical Instruments

The magnifying glass creates a virtual image outside the near point, allowing the eye to focus on the object despite its proximity.

Images and Plane

Mirrors

Spherical Mirrors

Lenses

Optical Instruments

Optical Instruments

The magnifying glass creates a virtual image outside the near point, allowing the eye to focus on the object despite its proximity.

Images and Plane

 MirrorsSpherical Mirrors

Lenses

Optical Instruments

Optical Instruments

The compound microscope uses two lenses to magnify an object.

Images and Plane

Mirrors
Spherical Mirrors

Lenses

Optical Instruments

Optical Instruments

The compound microscope uses two lenses to magnify an object.

Images and Plane

Mirrors
Spherical Mirrors

Lenses

Optical Instruments

The overall magnification is given by the magnification of the two lenses: $M=m_{o b} m_{e y} \approx-\frac{s}{f_{o b}} \frac{25 \mathrm{~cm}}{f_{e y}}$.

Optical Instruments

A telescope images very large objects at very large distances (opposite of a microscope).

Images and Plane

Mirrors
Spherical Mirrors

Lenses

Optical Instruments

Optical Instruments

A telescope images very large objects at very large distances (opposite of a microscope).

Images and Plane

 MirrorsSpherical Mirrors

Lenses

Optical Instruments

Here, the magnification is just the ratio of the focal lengths, $m=-f_{o b} / f_{e y}$.

Lenses

Lecture Question 2.3

To see the rings of Saturn, you need to resolve close to 1 $\operatorname{arcsec}\left(0.000278^{\circ}\right)$ of angle. Since, the human eye can only resolve about 60 arcsec of angle (0.0167°), a telescope must be used. If your telescope has a 1200 mm focal length objective lens, focal length eyepiece is required to see the rings of Saturn?
(a) 80 mm
(b) 48 mm
(c) 20 mm
(d) 19 mm
(e) 17 mm

Images and Plane

Mirrors
Spherical Mirrors

Lenses

Optical Instruments

