

Diffraction is the phenomenon that occurs when a wave interacts with an obstacle.

David J. Starling Penn State Hazleton PHYS 214 Chapter 4 - Diffraction

When a wave interacts with an obstacle, the waves spread out and interfere.

Chapter 4 - Diffraction

When a wave interacts with an obstacle, the waves spread out and interfere.

Single Slit Double Slit Gratings

Chapter 4 - Diffraction

X-Rays

The obstacle should be of the same size as the wavelength in order to be observed.

Destructive interference occurs as specific points; these points are found geometrically.

Destructive interference occurs as specific points; these points are found geometrically.

Careful consideration results in an equation for the minima:

$$a\sin(\theta) = m\lambda \text{ for } m = 1, 2, 3, \dots$$
(1)

More generally, we can write the intensity at different angles:

$$I(\theta) = I_m \operatorname{sinc}^2 \left[\frac{\pi a \sin(\theta)}{\lambda} \right]$$
(2)

where

$$\operatorname{sinc}(x) = \sin(x)/x.$$

Single Slit Double Slit Gratings

For a circular aperture, the first minimum is

$$\sin(\theta) = 1.22 \frac{\lambda}{a}.$$

Chapter 4 - Diffraction

Single Slit Double Slit Gratings X-Rays

(3)

For a circular aperture, the first minimum is

$$\sin(\theta) = 1.22\frac{\lambda}{a}.$$

The 1.22 comes from the geometry of the interference. The full intensity profile is given by the Airy pattern.

Single Slit Double Slit Gratings X-Rays

(3)

For two objects separated by a small angle (think binary star system), the Rayleigh criterion says they can be distinguished only if:

$$\theta_R \ge 1.22 \frac{\lambda}{d}.\tag{4}$$

Chapter 4 - Diffraction

Single Slit Double Slit Gratings

For two objects separated by a small angle (think binary star system), the Rayleigh criterion says they can be distinguished only if:

$$\theta_R \ge 1.22 \frac{\lambda}{d}.\tag{4}$$

Here, d is the diameter of the optics used in the measurement.

Single Slit Double Slit Gratings

In Art, we see how this comes into play with pointillism.

Maximilien Luce, The Seine at Herblay, 1890. Musée d'Orsay, Paris, France. Photo by Erich Lessing/Art Resource

In Art, we see how this comes into play with pointillism.

Maximilien Luce, The Seine at Herblay, 1890. Musée d'Orsay, Paris, France. Photo by Erich Lessing/Art Resource

Your pupil acts as an aperture, limiting your angular resolution.

When two slits are used, there is a combination of interference and diffraction.

Chapter 4 - Diffraction

Single Slit

Double Slit

Gratings

When two slits are used, there is a combination of interference and diffraction.

The more narrow the slits, the wider the diffraction pattern. For infinitely narrow slits, there is no diffraction.

Chapter 4 - Diffraction

Single Slit

Double Slit

Gratings

Mathematically, we simply multiply the interference and the diffraction terms:

$$I(\theta) = I_m \underbrace{\cos^2 \left[\frac{\pi d \sin(\theta)}{\lambda} \right]}_{\text{interference}} \underbrace{\sin^2 \left[\frac{\pi a \sin(\theta)}{\lambda} \right]}_{\text{diffraction}}$$
(5)

Single Slit Double Slit Gratings

Lecture Question 4.1

In a single slit experiment, what effect on the diffraction pattern would result as the slit width is decreased?

- (a) The width of the central band would increase.
- (b) The width of the central band would decrease.
- (c) The width of the central band would not change.
- (d) The result depends on the wavelength, so we cannot say.

Single Slit Double Slit Gratings

X-Ravs

When many slits are placed together, this is known as a grating.

Single Slit Double Slit Gratings

When many slits are placed together, this is known as a grating.

Single Slit Double Slit Gratings X-Rays

Chapter 4 - Diffraction

The maxima are located at an angle θ governed by the grating equation:

$$d\sin(\theta) = m\lambda$$
, where $m = 0, 1, 2, ...$ (6)

For a single wavelength, the half-width of the line is given by:

$$\Delta \theta_{hw} = \frac{\lambda}{Nd\cos(\theta)}$$

Chapter 4 - Diffraction

Single Slit Double Slit Gratings X-Rays

(7)

For a single wavelength, the half-width of the line is given by:

$$\Delta \theta_{hw} = \frac{\lambda}{Nd\cos(\theta)}$$

N is the number of lines on the grating.

Single Slit Double Slit Gratings X-Rays

(7)

Gratings are mainly used to separate colors (like prisms).

Chapter 4 - Diffraction

Single Slit Double Slit Gratings

Gratings are mainly used to separate colors (like prisms).

The dispersion *D* measures how well a grating separates each wavelength:

$$D = \frac{\Delta\theta}{\Delta\lambda} = \frac{m}{d\cos(\theta)} \tag{8}$$

Single Slit Double Slit Gratings

X-Rays

)

Another metric used for gratings is its ability to distinguish two close wavelengths, known as the resolving power.

$$R = \frac{\lambda_{avg}}{\Delta\lambda} = Nm \tag{9}$$

N $D (^{\circ}/\mu m)$ R Grating d (nm) θ A 10 000 2540 13.4° 23.2 10 000 B 20 000 2540 13.4° 23.2 20 000 C 10 000 1360 25.5° 46.3 10 000

Table 36-1 Three Gratings^a

X-Rays are high energy electromagnetic waves. They can be produced when electrons strike a metal surface.

X-Rays are high energy electromagnetic waves. They can be produced when electrons strike a metal surface.

The wavelength of an x-ray is about 0.1 nm, or 1 Å.

X-Rays

When x-rays travel through a crystalline structure, they diffract off of the periodic layers.

Single Slit Double Slit Gratings X-Rays

Chapter 4 - Diffraction

X-Rays

When x-rays travel through a crystalline structure, they diffract off of the periodic layers.

The excess distance determines the interference of the reflections of different layers:

$$2d\sin(\theta) = m\lambda$$
 where $m = 1, 2, 3, ...$ (10)

Lecture Question 4.2

Red and blue monochromatic beams of light are combined and then directed onto a diffraction grating. The pattern is observed on a screen located a behind the grating.

- (a) The central maximum is purple. The maxima on each side would alternate, first red, then blue.
- (b) The central maximum is purple. The maxima on each side would alternate, first blue, then red.
- (c) The central maximum is red. The maxima on each side would alternate, first blue, then red.
- (d) The central maximum is blue. The maxima on each side would alternate, first red, then blue.
- (e) The central maximum is blue. The maxima on each side would alternate, first blue, then red.

Single Slit Double Slit Gratings