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“All the fifty years of
conscious brooding have
brought me no closer to
answer the question, ‘What
are light quanta?’ Of course
today every rascal thinks he
knows the answer, but he is
deluding himself.”

-Albert Einstein

David J. Starling
Penn State Hazleton

PHYS 214
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Light is not a classical wave of electric and

magnetic fields. Light is composed of quanta, with

energy
E = hf

where h = 6.63× 10−34 J-s is the Planck constant.

How can light be both a particle and a wave?
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A 100 W sodium lamp emits 590 nm light. At what

rate does it emit photons?

R =
Energy per Time

Energy per Photon

=
P
hf

=
P

hc/λ

=
100× 590× 10−9

6.63× 10−34 × 3× 108

= 2.97× 1020 photons/s.
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How do we know that photons have discrete

energy? Let’s set up an experiment.

First, remember: V = U/q and ∆V = ∆U/q.

Incident light is monochromatic and knocks electrons out of
the metal.



Chapter 6 - Photons and
Matter Waves

Photon Energy

Photon Momentum

Probability Waves

Schrödinger’s Equation

Tunneling

Photon Energy

How do we know that photons have discrete

energy? Let’s set up an experiment.

First, remember: V = U/q and ∆V = ∆U/q.

Incident light is monochromatic and knocks electrons out of
the metal.



Chapter 6 - Photons and
Matter Waves

Photon Energy

Photon Momentum

Probability Waves

Schrödinger’s Equation

Tunneling

Photon Energy

How do we know that photons have discrete

energy? Let’s set up an experiment.

First, remember: V = U/q and ∆V = ∆U/q.

Incident light is monochromatic and knocks electrons out of
the metal.



Chapter 6 - Photons and
Matter Waves

Photon Energy

Photon Momentum

Probability Waves

Schrödinger’s Equation

Tunneling

Photon Energy

How do we know that photons have discrete

energy? Let’s set up an experiment.

First, remember: V = U/q and ∆V = ∆U/q.

Incident light is monochromatic and knocks electrons out of
the metal.



Chapter 6 - Photons and
Matter Waves

Photon Energy

Photon Momentum

Probability Waves

Schrödinger’s Equation

Tunneling

Photon Energy

We increase the voltage until no current is

measured. This is the stopping potential Vstop.

Kmax = U = eVstop

Making the light more intense does not change the stopping
potential.
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Alternatively, we can change the frequency of

light and measure the stopping potential for each

frequency.

There is a minimum photon frequency (energy) under which
no electrons are ejected.
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The resulting equation is the conservation of

energy: one photon energy turns into potential

and kinetic energy of an electron:

hf = Kmax + Φ

Φ is known as the “work function” and represents the
energy required to pull the electron away from the material.



Chapter 6 - Photons and
Matter Waves

Photon Energy

Photon Momentum

Probability Waves

Schrödinger’s Equation

Tunneling

Photon Energy

The resulting equation is the conservation of

energy: one photon energy turns into potential

and kinetic energy of an electron:

hf = Kmax + Φ

Φ is known as the “work function” and represents the
energy required to pull the electron away from the material.



Chapter 6 - Photons and
Matter Waves

Photon Energy

Photon Momentum

Probability Waves

Schrödinger’s Equation

Tunneling

Photon Energy

If we replace Kmax with eVstop, we get the another

form of the photoelectric equation.

Vstop =
h
e

f − Φ

e

The work function depends on the material but is a constant.
Therefore, we get a linear relationship.
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Lecture Question 6.1
Upon which one of the following parameters does the
energy of a photon depend?

(a) the mass of the photon

(b) the amplitude of the electric field

(c) the direction of the electric field

(d) the relative phase of the electromagnetic wave relative

to the source that produced it

(e) the frequency of the photon
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Although the photon is massless, it carries

momentum p = h/λ. We know from experiments.

X-rays scatter off of a carbon target. The resulting angle,
intensity and wavelength are measured.
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Using a 71.1 pm x-ray beam, Compton measured

the following “Compton Effect.”

There is a shift in the energy of the x-ray photons as the
scattering angle is changed.
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The photon is colliding with an electron. Three

things can happen.

During a collision, energy must be conserved: hf = hf ′+ K.
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After the collision, the electron has relativistic

kinetic energy: K = mc2(γ − 1),

with γ = 1/
√

1− (v/c)2.

This gives:

hf = hf ′ + mc2(γ − 1)

h
λ

=
h
λ′

+ mc(γ − 1) [I]

using c = fλ.
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We can also consider momentum in the x- and

y-directions.

h
λ

=
h
λ′

cos(φ) + γmv cos(θ) [II]

0 =
h
λ′

sin(φ)− γmv sin(θ) [III]
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When we combine equations I, II and III to solve

for ∆λ = λ′ − λ, we get:

∆λ =
h

mc
(1− cosφ)

Here, we’ve eliminated the unknown electron properties v
and θ and h/mc is the Compton wavelength.
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When we combine equations I, II and III to solve

for ∆λ = λ′ − λ, we get:

∆λ =
h

mc
(1− cosφ)

Here, we’ve eliminated the unknown electron properties v
and θ and h/mc is the Compton wavelength.
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How do we bring together the wave nature and

particle nature of light?

During an interference experiment, we say that the photon is
spread out in a probability distribution.
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We associate different locations with a probability

density of detecting the photon there.

The photon is spread out like a wave while it travels, but
behaves particle-like when detected.
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An interferometer can be thought of as a photon

interfering with itself.

A photon is emitted, its probability wave splits into two
paths, interferes with itself and is detected as a photon (or
not) at D.
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Massive particles also behave like waves, known

as matter waves, with deBroglie wavelength

λ =
h
p
.
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Electrons or x-rays strike the target and then

diffract like waves off of the crystalline structure.
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Lecture Question 6.2
Which one of the following experiments demonstrates the
wave nature of electrons?

(a) Small flashes of light can be observed when electrons

strike a special screen.

(b) Electrons directed through a double slit can produce an

interference pattern.

(c) The Michelson-Morley experiment confirmed the

existence of electrons and their nature.

(d) In the photoelectric effect, electrons are observed to

interfere with electrons in metals.

(e) Electrons are observed to interact with photons (light

particles).
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In the past, we attempted to find the exact position

~r(t) of an object using Newton’s Laws.

That is, we solve the differential equation ~Fnet = m d2~r
dt2 with

initial conditions~r0 and~v0. The solution is

~r(t) = x(t)̂i + y(t)̂j + z(t)k̂
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However, in quantum mechanics, particles do not

obey ~F = m~a, and exact positions~r(t) do not

exist. Instead, we have a probability density:

Ψ(x, y, z, t)

Ψ(x, y, z, t) is known as the wave function. The probability
density is given by its absolute square p(x, y, z, t) = |Ψ|2.



Chapter 6 - Photons and
Matter Waves

Photon Energy

Photon Momentum

Probability Waves

Schrödinger’s Equation

Tunneling

Schrödinger’s Equation

However, in quantum mechanics, particles do not

obey ~F = m~a, and exact positions~r(t) do not

exist. Instead, we have a probability density:

Ψ(x, y, z, t)

Ψ(x, y, z, t) is known as the wave function. The probability
density is given by its absolute square p(x, y, z, t) = |Ψ|2.



Chapter 6 - Photons and
Matter Waves

Photon Energy

Photon Momentum

Probability Waves

Schrödinger’s Equation

Tunneling

Schrödinger’s Equation

Often, the wavefunction can by simplified:

Ψ(x, y, z, t) = ψ(x, y, z)e−iωt

where ω = 2πf is the angular frequency of the matter wave.

The probability that a detector will measure a particle
between a position x1 and x2 is given by:

p =

∫ x2

x1

|ψ(x)|2dx→
∫

V
|ψ(x, y, z)|2dV.
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This wavefunction Ψ, like~r, is the solution to an

important differential equation.

Schrödinger’s Equation!

E = K + U

=
1
2

mv2 + U

=
1

2m
(mv)2 + U

=
p2

2m
+ U

Eψ =
p2

2m
ψ + Uψ.
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Let’s assume that the wavefunction, which

describes our wave-like electrons, is oscillatory.

ψ(x, t) ∝ ei(kx−ωt)

with k = 2π/λ = p/~ and ~ = h/2π.

d2ψ

dx2 = (ik)2ψ

d2ψ

dx2 = −p2

~2ψ

− ~2 d2ψ

dx2 = p2ψ

− ~2

2m
d2ψ

dx2 =
p2

2m
ψ
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Putting this all together, we get the

time-independent Schrödinger’s equation.

− ~2

2m
d2ψ

dx2 + Uψ = Eψ

or,
d2ψ

dx2 +
2m
~2 (E − U)ψ = 0

Caveats:

(a) This is only 1-dimensional

(b) This ignores the time-oscillation

(c) The solution depends on the function U(x)
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Let’s solve Schrödinger’s Equation for a free

particle (i.e., U(x) = 0).

d2ψ

dx2 +
2m
~2 (E)ψ = 0

d2ψ

dx2 +
2m
~2 (

1
2

mv2)ψ = 0

d2ψ

dx2 +
(mv)2

~2 ψ = 0

d2ψ

dx2 +
(p
~

)2
ψ = 0

d2ψ

dx2 + k2ψ = 0

The general solution is:

ψ(x) = Aeikx + Be−ikx → Aeikx(right traveling)
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This solution tells us how a free particle moves in

1D. The probability density is the absolute square.

p = |ψ(x)|2

= ψ∗(x)ψ(x)

= (Ae−ikx)× (Aeikx)

= A2

= constant
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One consequence of this probabilistic behavior is

the Heisenberg Uncertainty Principle.

∆x ·∆px ≥ ~

The less uncertainty in position, the more uncertainty in
momentum (and vice versa).
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Lecture Question 6.3
Which one of the following statements provides the best
description of the Heisenberg Uncertainty Principle?

(a) If a particle is confined to a region ∆x, then its

momentum is within some range ∆p.

(b) If the error in measuring the position is ∆x, then we

can determine the error in measuring the momentum

∆p.

(c) If one measures the position of a particle, then the

value of the momentum will change.

(d) It is not possible to be certain of any measurement.

(e) Depending on the degree of certainty in measuring the

position of a particle, the degree of certainty in

measuring the momentum is affected.



Chapter 6 - Photons and
Matter Waves

Photon Energy

Photon Momentum

Probability Waves

Schrödinger’s Equation

Tunneling

Tunneling

Consider a puck sliding along an icy hill where

Ub = mgh is the potential energy at the top.

In this case, the puck needs K > Ub to pass over this barrier.
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However, in quantum mechanics, a particle can

tunnel through a barrier even if it does not have

enough energy to do so.

We must solve Schrödinger’s equation in order to find the
tunneling probability!
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d2ψ

dx2 +
2m
~2 (E − U)ψ = 0

I For x < 0 and x > L, we have a free particle U = 0.

I For 0 < x < L, E < Ub = eVb.

I At each boundary, ψ(x) must be continuous and

smooth.



Chapter 6 - Photons and
Matter Waves

Photon Energy

Photon Momentum

Probability Waves

Schrödinger’s Equation

Tunneling

Tunneling

d2ψ

dx2 +
2m
~2 (E − U)ψ = 0

I For x < 0 and x > L, we have a free particle U = 0.

I For 0 < x < L, E < Ub = eVb.

I At each boundary, ψ(x) must be continuous and

smooth.



Chapter 6 - Photons and
Matter Waves

Photon Energy

Photon Momentum

Probability Waves

Schrödinger’s Equation

Tunneling

Tunneling

The term E − U is the kinetic energy.

E − U =
1
2

mv2 =
p2

2m
=

1
2m

(k~)2

(note: p = h/λ = k~)

Substituting in:

d2ψ

dx2 + k2ψ = 0

I This has the same solutions as before (eikx)

I Here, k =
√

2m(E − U)~

I The wavenumber can be imaginary if U > E.
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There are three regions when an electron hits a

barrier:

I Left Side (k ∈ R): ψ(x) = Aeikx + Be−ikx

I Middle Section (k ∈ I): ψ(x) = Ceikx + De−ikx

I Right Side (k ∈ R): ψ(x) = Eeikx

I At each boundary, ψ(x) must be continuous and

smooth.
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