Chapter 8 - Atomic Structure

"Oh, the humanity!"
-Herbert Morrison, radio reporter of the Hindenburg disaster

David J. Starling
Penn State Hazleton
PHYS 214

Hydrogen Atom

The hydrogen atom is composed of a proton and an electron with potential energy:

$$
U(r)=\frac{1}{4 \pi \epsilon_{0}} \frac{e^{2}}{r} .
$$

Hydrogen Atom

The hydrogen atom is composed of a proton and an electron with potential energy:

$$
U(r)=\frac{1}{4 \pi \epsilon_{0}} \frac{e^{2}}{r}
$$

Now, our well is not square but follows an inverse law.

Hydrogen Atom

All we need to do is solve Schrödinger's equation in spherical coordinates with this radial potential.

Hydrogen Atom

All we need to do is solve Schrödinger's equation in spherical coordinates with this radial potential.

$$
\begin{array}{r}
\frac{-\hbar^{2}}{2 \mu} \frac{1}{r^{2} \sin \theta}\left[\sin \theta \frac{\partial}{\partial r}\left(r^{2} \frac{\partial \psi}{\partial r}\right)+\frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial \psi}{\partial \theta}\right)+\right. \\
\left.\frac{1}{\sin \theta} \frac{\partial^{2} \psi}{\partial \phi^{2}}\right]-\frac{e^{2}}{4 \pi \epsilon_{0} r} \psi=E \psi
\end{array}
$$

Hydrogen Atom

All we need to do is solve Schrödinger's equation in spherical coordinates with this radial potential.

$$
\begin{array}{r}
\frac{-\hbar^{2}}{2 \mu} \frac{1}{r^{2} \sin \theta}\left[\sin \theta \frac{\partial}{\partial r}\left(r^{2} \frac{\partial \psi}{\partial r}\right)+\frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial \psi}{\partial \theta}\right)+\right. \\
\left.\frac{1}{\sin \theta} \frac{\partial^{2} \psi}{\partial \phi^{2}}\right]-\frac{e^{2}}{4 \pi \epsilon_{0} r} \psi=E \psi
\end{array}
$$

We're not there yet, so let's try a different way...

Hydrogen Atom

Instead, let's think of the electron as orbiting the proton classically.

(b)

Hydrogen Atom

Instead, let's think of the electron as orbiting the proton classically.

Using centripetal acceleration, we get

$$
\begin{aligned}
F & =m a \\
\frac{1}{4 \pi \epsilon_{0}} \frac{e^{2}}{r^{2}} & =m\left(-\frac{v^{2}}{r}\right)
\end{aligned}
$$

Hydrogen Atom

Based on experimental evidence, he know that the energy levels are quantized.

Hydrogen Atom

Based on experimental evidence, he know that the energy levels are quantized.

Nonquantized

So let's guess that the angular momentum l is also quantized:

$$
\begin{gathered}
l=r m v=n \hbar \\
v=\frac{n \hbar}{r m} \\
\text { for } n=1,2,3, \ldots
\end{gathered}
$$

Hydrogen Atom

Combining our quantized angular momentum assumption with the orbital equation, we get

$$
r=\frac{4 \pi \epsilon_{0} \hbar^{2}}{m e^{2}} n^{2}=\frac{\epsilon_{0} h^{2}}{\pi m e^{2}} n^{2}
$$

Hydrogen Atom

Combining our quantized angular momentum assumption with the orbital equation, we get

$$
r=\frac{4 \pi \epsilon_{0} \hbar^{2}}{m e^{2}} n^{2}=\frac{\epsilon_{0} h^{2}}{\pi m e^{2}} n^{2}
$$

We call the multiplier of n^{2} the Bohr Radius a.

$$
r=a n^{2} \text { with } a=\frac{\epsilon_{0} h^{2}}{\pi m e^{2}}
$$

and $a \approx 52.92 \mathrm{pm}$.

Hydrogen Atom

Combining our quantized angular momentum assumption with the orbital equation, we get

$$
r=\frac{4 \pi \epsilon_{0} \hbar^{2}}{m e^{2}} n^{2}=\frac{\epsilon_{0} h^{2}}{\pi m e^{2}} n^{2}
$$

We call the multiplier of n^{2} the Bohr Radius a.

$$
r=a n^{2} \text { with } a=\frac{\epsilon_{0} h^{2}}{\pi m e^{2}} .
$$

and $a \approx 52.92 \mathrm{pm}$.

This result is surprisingly accurate!

Hydrogen Atom

To find the energy, we combine kinetic and potential and then use the orbital equation.

$$
\begin{aligned}
\frac{1}{4 \pi \epsilon_{0}} \frac{e^{2}}{r^{2}} & =m \frac{v^{2}}{r} \\
E & =\frac{1}{2} m v^{2}-\frac{1}{4 \pi \epsilon_{0}} \frac{e^{2}}{r}=-\frac{1}{8 \pi \epsilon_{0}} \frac{e^{2}}{r^{2}}
\end{aligned}
$$

Hydrogen Atom

To find the energy, we combine kinetic and potential and then use the orbital equation.

$$
\begin{aligned}
\frac{1}{4 \pi \epsilon_{0}} \frac{e^{2}}{r^{2}} & =m \frac{v^{2}}{r} \\
E & =\frac{1}{2} m v^{2}-\frac{1}{4 \pi \epsilon_{0}} \frac{e^{2}}{r}=-\frac{1}{8 \pi \epsilon_{0}} \frac{e^{2}}{r^{2}}
\end{aligned}
$$

Subbing in the Bohr radius formula for r, we get:

$$
E_{n}=-\frac{m e^{4}}{8 \epsilon_{0} h^{2}} \frac{1}{n^{2}}=-\frac{E_{0}}{n^{2}} \text { for } n=1,2,3, \ldots
$$

where $E_{0}=2.180 \times 10^{-18} \mathrm{~J}$.

Hydrogen Atom

To find the energy, we combine kinetic and potential and then use the orbital equation.

$$
\begin{aligned}
\frac{1}{4 \pi \epsilon_{0}} \frac{e^{2}}{r^{2}} & =m \frac{v^{2}}{r} \\
E & =\frac{1}{2} m v^{2}-\frac{1}{4 \pi \epsilon_{0}} \frac{e^{2}}{r}=-\frac{1}{8 \pi \epsilon_{0}} \frac{e^{2}}{r^{2}}
\end{aligned}
$$

Subbing in the Bohr radius formula for r, we get:

$$
E_{n}=-\frac{m e^{4}}{8 \epsilon_{0} h^{2}} \frac{1}{n^{2}}=-\frac{E_{0}}{n^{2}} \text { for } n=1,2,3, \ldots
$$

where $E_{0}=2.180 \times 10^{-18} \mathrm{~J}$.

This result agrees with quantum theory!

Hydrogen Atom

The hydrogen atom can absorb a photon if its

$$
\begin{aligned}
E_{\gamma}=h f & =E_{\text {high }}-E_{\text {low }} \\
\frac{h c}{\lambda} & =-E_{0}\left(\frac{1}{n_{\text {high }}^{2}}-\frac{1}{n_{\text {low }}^{2}}\right) \\
\frac{1}{\lambda} & =-\frac{E_{0}}{h c}\left(\frac{1}{n_{\text {high }}^{2}}-\frac{1}{n_{\text {low }}^{2}}\right) \\
\frac{1}{\lambda} & =R\left(\frac{1}{n_{\text {low }}^{2}}-\frac{1}{n_{\text {high }}^{2}}\right)
\end{aligned}
$$

with $R=1.097373 \times 10^{7} \mathrm{~m}^{-1}$ (Rydberg Constant).

Hydrogen Atom

The hydrogen atom can absorb a photon if its energy matches an electron transition energy.

$$
\begin{aligned}
E_{\gamma}=h f & =E_{\text {high }}-E_{\text {low }} \\
\frac{h c}{\lambda} & =-E_{0}\left(\frac{1}{n_{\text {high }}^{2}}-\frac{1}{n_{\text {low }}^{2}}\right) \\
\frac{1}{\lambda} & =-\frac{E_{0}}{h c}\left(\frac{1}{n_{\text {high }}^{2}}-\frac{1}{n_{\text {low }}^{2}}\right) \\
\frac{1}{\lambda} & =R\left(\frac{1}{n_{\text {low }}^{2}}-\frac{1}{n_{\text {high }}^{2}}\right)
\end{aligned}
$$

with $R=1.097373 \times 10^{7} \mathrm{~m}^{-1}$ (Rydberg Constant).
This is how we find the wavelength of photons emitted from electronic transitions.

Hydrogen Atom

Each transition has a unique energy with a photon of a different wavelength.

Hydrogen Atom

Each transition has a unique energy with a photon of a different wavelength.

If the ending state is $n=1$, then that series of wavelengths is known as the Lyman series.

Hydrogen Atom

But the electron may end up in another state instead.

Hydrogen Atom

Hydrogen Atom

Remember this?

$$
\begin{array}{r}
\frac{-\hbar^{2}}{2 \mu} \frac{1}{r^{2} \sin \theta}\left[\sin \theta \frac{\partial}{\partial r}\left(r^{2} \frac{\partial \psi}{\partial r}\right)+\frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial \psi}{\partial \theta}\right)+\right. \\
\left.\frac{1}{\sin \theta} \frac{\partial^{2} \psi}{\partial \phi^{2}}\right]-\frac{e^{2}}{4 \pi \epsilon_{0} r} \psi=E \psi
\end{array}
$$

Hydrogen Atom

Remember this?

$$
\begin{array}{r}
\frac{-\hbar^{2}}{2 \mu} \frac{1}{r^{2} \sin \theta}\left[\sin \theta \frac{\partial}{\partial r}\left(r^{2} \frac{\partial \psi}{\partial r}\right)+\frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial \psi}{\partial \theta}\right)+\right. \\
\left.\frac{1}{\sin \theta} \frac{\partial^{2} \psi}{\partial \phi^{2}}\right]-\frac{e^{2}}{4 \pi \epsilon_{0} r} \psi=E \psi
\end{array}
$$

The ground state solution is:

$$
\psi(x)=\frac{1}{\sqrt{\pi} a^{3 / 2}} e^{-r / a}
$$

Hydrogen Atom

The hydrogen atom's electron, in the ground state, can exist at all radii (except 0).

$$
P(r)=4 \pi r^{2}|\psi(x)|^{2}=\frac{4}{a^{3}} r^{2} e^{-2 r / a}
$$

Hydrogen Atom

The hydrogen atom's electron, in the ground state, can exist at all radii (except 0).

$$
P(r)=4 \pi r^{2}|\psi(x)|^{2}=\frac{4}{a^{3}} r^{2} e^{-2 r / a}
$$

The peak of this function is at $r=a$, the Bohr radius!

Hydrogen Atom

Higher energy states of the hydrogen atom get momentum.

Hydrogen Atom

Higher energy states of the hydrogen atom get more complex due to the quantized angular momentum.

These states all have the same energy $(n=2)$ but different angular momenta $(l=0,1)$.

Hydrogen Atom

There are three quantum numbers for the hydrogen atom.

Table 39-2

Quantum Numbers for the Hydrogen Atom

Symbol	Name	Allowed Values
n	Principal quantum number	$1,2,3, \ldots$
ℓ	Orbital quantum number	$0,1,2, \ldots, n-1$
m_{ℓ}	Orbital magnetic quantum number	$-\ell,-(\ell-1), \ldots,+(\ell-1),+\ell$

Hydrogen Atom

There are three quantum numbers for the hydrogen atom.

Table 39-2

Quantum Numbers for the Hydrogen Atom

Symbol	Name	Allowed Values
n	Principal quantum number	$1,2,3, \ldots$
ℓ	Orbital quantum number	$0,1,2, \ldots, n-1$
m_{ℓ}	Orbital magnetic quantum number	$-\ell,-(\ell-1), \ldots,+(\ell-1),+\ell$

Table 39-3

Quantum Numbers for Hydrogen Atom States with $n=2$

n	ℓ	m_{ℓ}
2	0	0
2	1	+1
2	1	0
2	1	-1

Hydrogen Atom

Lecture Question 8.1

Which of the following most closely resembles the Bohr model of the hydrogen atom?
(a) A solid metal sphere with a net positive charge.
(b) A hollow metal sphere with a net negative charge.
(c) A tray full of mud with pebbles uniformly distributed throughout.
(d) The Moon orbiting the Earth.
(e) Two balls, one large and one small, connected by a spring.

